1.Xi’an Key Laboratory of Computational Imaging, Xidian University, Xi’an 710071, China 2.School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China 3.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 62075119, 61975254, 61805187, 61805132) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2020A1515111012)
Received Date:19 March 2021
Accepted Date:25 April 2021
Available Online:07 June 2021
Published Online:05 September 2021
Abstract:Trace gas analysis for SF6 decomposition is a powerful diagnostic method to identify partial discharge problem occurring in electrical equipment. In particular, it is recognized that the SF6 decomposition gases (such as CO, H2S, SO2 and CF4) can effectively determine the inner insulation condition of the electrical equipment. Currently, most of researches of diagnostic methods cannot meet the online high-precision detection of gas derivatives in SF6 electrical insulation equipment. Therefore, there is a need of developing a sensitive, selective and cost-effective sensor system for CO detection in an SF6 buffer gas environment due to the fact that the power system is filled with pure SF6 as the dielectric gas, which means that the concentration of SF6 is usually > 99.8%. The traditional photoacoustic CO gas sensors cannot be directly used in power system, since several SF6 physical constants strongly differ from those of N2 or air. In addition, SF6 molecule reveals uninterrupted and strong absorption lines in the mid-infrared spectral region. In this work, a CO gas sensor working in high concentration SF6 background gas is designed by using a distributed feedback (DFB) laser as an excitation source with a center wavelength of 2.3 μm. The absorption line strength of 2.3 μm is ~ two orders of magnitude higher than the absorption line strength around 1.56 μm, which can improve the sensor detection performance. A background-gas-induced high-Q differential photoacoustic cell is simulated numerically and tested experimentally. The quality factor of the designed photoacoustic cell in pure SF6 gas is 85, which is ~ 4 times higher than that in N2 carrier gas. The experimental results show that the maximum gas flow rate of the differential structure photoacoustic cell is ~ 6 times higher than that of the single resonant cavity photoacoustic cell. After optimizing the resonance frequency, gas velocity and working pressure of the sensor system, the detection sensitivity of the volume fraction of 1.85 × 10–6 is achieved. In the case of the volume fraction of 50 × 10–6 CO/SF6 gas mixture, the maximum photoacoustic signal amplitude of 19.6 μV is obtained, the corresponding normalized noise equivalent concentration (1σ) is 3.68 × 10–8 cm–1·W·Hz1/2 in 1 s integration time. A linear fitting is implemented to evaluate the response of the sensor from 50 × 10–6 to 1000 × 10–6, resulting in an R square value of 0.9997. The CO photoacoustic gas sensor has high sensitivity, good selectivity and strong noise immunity, which can provide an on-line detection technology for potential insulation fault diagnosis in the power system. The capability of CO gas sensor can be improved by using a higher excitation optical output power and/or reducing the PAC resonator volume to increase the cell constant. Keywords:pohotoacoustic spectroscopy/ trace gas sensors/ electrical equipment insulation diagnosis
全文HTML
--> --> --> -->
2.1.CO气体探测波长和激励光源的选择
根据HITRAN数据库, CO分子在红外波长区域有三个比较强的吸收带, 分别位于波长1.56, 2.33和4.7 μm附近, 其中4.7 μm是CO分子的基频吸收带, 吸收线强度最高. 此外, SF6分子仅在10—17.2 μm波长区域有强的ν3, ν4和ν4 + ν6 – ν6吸收带, 在波长小于10 μm的区域没有吸收, 因此为获得最佳的CO气体探测灵敏度, 应选择基频吸收带作为探测波长. 但是在电气设备中载气SF6的浓度高于99.8%, SF6分子在中红外区域原本较弱的吸收线会对其他气体衍生物的探测造成干扰. 图1展示的是将纯SF6气体和浓度为0.1%的CO/N2标准气分别通入到吸收路径为9.5 m的多通池后, 并利用FTIR(Thermofisher Nicolet IS50)测量获得的红外吸收谱线图. 从图1中看出在波长大于3.3 μm(尤其在5.5—10.0 μm)区域, SF6分子出现连续且较强的吸收谱线. 尽管CO分子在4.7 μm附近有最强的基频吸收带, 但是在电气设备中SF6气体浓度的微弱变化都会对光声信号造成干扰, 影响传感器在实际应用中的测量精度. 图1插图中展示了SF6分子在2.33 μm附近对CO的探测没有吸收干扰, 且CO分子吸收线强度在2.33 μm附近比在1.56 μm附近强两个数量级, 因此选择波长2.33 μm作为CO气体的目标吸收线. 图 1 纯SF6气体和0.1% CO/N2气体混合物在1—10 μm波长区域的红外吸收谱线; 插图: 在2.28—2.42 μm波长区域放大的吸收谱线 Figure1. The infrared absorbance spectrum cures of pure SF6 and 0.1% CO/N2 gas mixture between 1–10 μm wavelength region; Insert: The enlarged view of absorbance spectrum between 2.28–2.42 μm region.
一个单模的DFB激光器(nanoplus nanosystems and technologies)被选择作为激励光源, 输出波数为4285 cm–1, 对应的吸收线强度为3.4 × 10–21 cm/molecule. 根据HITAN数据库, SO2, CO2, CF4和H2S等常见的SF6气体衍生物在波数为4260—4305 cm–1之间没有明显的吸收线, 而从图2中可以看出, H2O分子(4282.4 cm–1)的吸收线强度比CO分子在第一泛频吸收带附近的吸收线强度弱三个数量级, 因此CO分子的探测不受常见的SF6气体衍生物和水汽的影响. 经实验测量, 激光器的电流和温度调制系数分别为–0.049 cm–1/mA和–0.403 cm–1/℃. 当激光器的温度设定为29.8 ℃, 输入电流为90 mA时, 输出的激光功率为2.3 mW. 图 2 CO和H2O气体在4260—4308 cm–1波数范围的吸收线位置和对应的吸收线强度 Figure2. The absorption line positions and line strengths of CO and H2O gas between 4260–4308 cm–1.
22.2.实验系统设计 -->
2.2.实验系统设计
基于光声光谱法的CO气体传感系统示意图如图3所示. 一瓶纯SF6和一瓶体积分数为1000 × 10–6的CO/SF6标准气输入到配气系统后, 用于制作不同浓度的CO/SF6气体. 在光声池的进气口和出气口通过压力控制器、隔膜气泵及针阀来控制和维持整个系统的压强和气体流速. 光声池由两个尺寸完全一样的光学谐振腔(尺寸为Φ90 mm × 8 mm)、两个气体缓冲室(Φ20 mm × 10 mm)及两片光学窗口(Φ25.4 mm × 5 mm)构成. 在每一个谐振腔的中间部位开一个小孔, 并安装一个高灵敏的驻极体麦克风来探测在声学腔中积累的光声信号. 两个麦克风的尺寸大小为6.0 mm × 2.7 mm, 灵敏度为(–40 ± 2) dB, 且在频率1 kHz附近的响应几乎一样. 从麦克风输出的电流信号输入到一个自制的差分放大电路后, 输送给锁相放大器(Stanford, SR830)进行解调. 由于采用了结构完全对称的光声池, 在没有激励光通过光声池时, 麦克风探测到的气流噪声和环境噪声等技术噪声的幅值和相位相同, 因此可以通过差分电路降低系统的背景噪声. 锁相放大器的积分时间设置为1 s, 滤波器斜率为12 dB/oct, 对应的探测带宽$ ?f = 0.25 $ Hz. 图 3 在SF6载气下的CO气体传感器装置示意图 Figure3. Schematic of CO gas sensor system in SF6 buffer gas.