Fund Project:Project supported by the Science Foundation of Nanchang Institute of Science and Technology, China (Grant No. NGRCZX-21-04).
Received Date:22 May 2021
Accepted Date:17 July 2021
Available Online:17 August 2021
Published Online:05 December 2021
Abstract:In this work, the Hubbard model is adopted to describe fermions with on-site repulsive interaction and the nearest-neighbor hopping in anisotropic ruby lattice. The combination of cluster dynamical mean field theory and continuous-time quantum Monte Carlo algorithm is used to solve the theoretical model.It is widely accepted that the density of states and the double occupancy are two important quantities for determining the phase transition of two-dimensional strongly correlated system. Therefore, based on the self-consistent calculation, using the maximum entropy method to calculate the single particle density of states and double occupancy of fermions in anisotropic ruby lattice. Here in this work, there are 6 sites in a cluster.The influences of temperature, interaction and anisotropic parameter on metal-insulator phase transition of fermions in anisotropic ruby lattice are discussed based on the calculations of single particle density of state and double occupancy. Finally, the metal-Mott insulator phase diagram which shows the competition between temperature and on-site repulsive interaction in the phase transition of fermions in anisotropic ruby lattice is presented. The results shows that the system is in metallic state for the regime of weak interaction and low temperature, and the Mott insulator appears in the regime of strong interaction and high temperature. The metallic state and Mott insulating one are separated by the second-order transition line in the phase diagram. Keywords:anisotropic ruby lattice/ Hubbard model/ dynamical mean filed theory/ quantum phase transition
全文HTML
--> --> --> 1.引 言研究和发现二维强关联体系的拓扑绝缘体、量子霍尔效应、量子反常霍尔效应、玻色-爱因斯坦凝聚等新奇物相是凝聚态物理的重要内容 [1-7]. 拓扑绝缘体材料Bi14Rh3I9[8]的某一特定平面内存在的二维ruby晶格, 由于独特的晶格结构而引起研究人员兴趣. 拓扑绝缘体材料Bi14Rh3I9的晶体结构中有周期性交错堆垛的铋-铑网格和绝缘层(图1(a)—(c)); 由共棱RhBi8立方体覆盖六角晶格边所形成的金属间化合物的某一特定平面构成二维ruby晶格(图1(d)). 图 1 拓扑绝缘体材料Bi14Rh3I9的晶格结构示意图 (a)?(c) Bi14Rh3I9的晶体结构及其构成单元, 绝缘层[Bi2I8]2–的zigzag链分离由共棱RhBi8立方体构成的六角网格状金属间的 [(Rh4Bi)3I]2+层, 六角晶格的边由共棱RhBi8立方体覆盖; (d) 二维ruby晶格与六角晶格结构俯视图[8] Figure1. Sketch of crystal structure of topological insulator Bi14Rh3I9: (a)?(c) Triclinic crystal structure of Bi14Rh3I9. Insulating layers of [Bi2I8]2– zigzag chains separate the intermetallic [(RhBi4)3I]2+ layers that consist of hexagonal nets of edge-sharing RhBi8 cubes; (d) honeycomb lattice of graphene with the structure of the intermetallic layer [8].
其中i是用团簇动力学平均场理论将格点模型映射到自洽场中杂质模型后的团簇内格点的序号. 首先给出各向异性ruby晶格($\lambda = 2.0$)中费米子体系的固定温度($T = 0.2$)情况下对应不同相互作用的态密度(图6(a))和固定相互作用($U = $$ 8.0$)情况下对应不同温度的态密度(图6(b)). 之后比较了温度($T = 0.2$)和相互作用($U = 8.0$)都固定的情况下对应不同各向异性参数λ的态密度的演化(图7). 图 6 各向异性ruby晶格($\lambda =2.0 $)中费米子体系的态密度 (a) T = 0.2时不同相互作用对应的态密度; (b) U = 8时不同温度对应的态密度 Figure6. Density of states of anisotropic ruby lattice ($\lambda =2.0 $) with fermions: (a) Density of states for different interaction at $T = 0.2$; (b) density of states for different temperature at $U = 8.0 $.
图 7 固定温度($T = 0.2$)和固定相互作用($U = 8.0 $)情况下, 各向异性参数对ruby晶格中费米子体系态密度的影响 Figure7. Comparison of the effect of anisotropic parameter λ on the density of states of fermions in ruby lattice on for $T = 2 $ and $ U = 0 $.
如图7所示, 温度$T = 0.2$和相互作用$U = 8.0 $的情况下, 随着各向异性参数λ的增大费米面两侧态密度谱峰逐渐演化到最后在$\lambda \approx 1$时费米面处出现能隙. $\lambda = 2$和$\lambda = 0.67$时态密度的演化形式类似, 不出现近藤峰. $\lambda = 1$态密度演化过程中出现准粒子峰, 即近藤峰, 其特征是松原频率$\omega = 0$处两侧出现具有类似肩膀的准粒子峰. 由态密度演化形式可以推测, 在$\lambda = 2$到$\lambda = 1$的过程中, 体系中会出现近藤金属. 各向异性参数对态密度的演化发现和赝能隙的形成具有显著的影响. 在固定的排斥相互作用能情况下, 通过比较不同各向异性参数所对应的态密度发现, 松原频率$\omega = 0$处态密度随着各向异性参数的增大而减小. 严格来说, 在有限温度下由$\omega = 0$处态密度的赝能隙决定的相变, 实际上是一个转变(crossover). 双占据数是用半满的哈伯德模型描述强关联体系金属-绝缘相变的另一个重要参数. 双占据数定义为$\mathrm{D}\mathrm{o}\mathrm{c}\mathrm{c}=\partial F/\partial U=\dfrac{1}{6}{\displaystyle\sum }_{i}\left\langle{{n}_{i\uparrow }{n}_{i\downarrow }}\right\rangle$, 其中F是自由能, U是相互作用. 图8(a), (b)分别给出不同相互作用情况下各向异性ruby晶格($\lambda = 2$)的双占据数随温度的变化和不同温度情况下各向异性ruby晶格($\lambda = 2$)的双占据数随相互作用的变化. 如图8(a)所示, 随着温度的降低, 温度对于双占据数的影响趋于不明显. 由图8(b)可知, 随着相互作用的增加体系的双占据数趋于0, 意味着费米子的局域化程度增强. 图 8 各向异性ruby晶格中费米子体系的双占据数 (a) 不同相互作用下体系双占据数随温度的变化; (b) 不同温度下体系双占据数随相互作用的变化 Figure8. Double occupancy of anisotropic ruby lattice with fermions: (a) Comparison between double occupancy for different temperature with the change of interaction; (b) comparison between double occupancy for different interaction with the change of temperature.
图9所示为各向异性参数对体系双占据数的影响. 在固定温度($T = 0.2$)和固定相互作用($T = $$ 8.0$)情况下, ruby晶格中费米子体系的双占据数随着各向异性参数的增大趋于0, 这一趋势说明费米子局域化加强, 即体系趋于Mott绝缘体相, 但趋势放缓. 图 9 温度和相互作用固定的情况下, ruby晶格中费米子体系的双占据数随各向异性参数的变化 Figure9. Trend of double occupancy with the change of anisotropic parameter for fixed T and U.