Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11975006, 11575074) .
Received Date:30 June 2021
Accepted Date:02 August 2021
Available Online:17 August 2021
Published Online:05 December 2021
Abstract:Wurtzite ZnO and rutile TiO2 have important application value in solar cells, photocatalysts, self-cleaning coatings, etc. In addition, ZnO and TiO2 are crucial basic materials for the development of semiconductor spintronics devices due to room temperature ferromagnetism in the state of defects or doped specific elements. Many studies indicate that the magnetic, optical, and electrical properties of ZnO and TiO2 are affected by intrinsic defects (such as vacancies, interstitial atoms, etc.). Electron irradiation has the incomparable advantages over other particle beam irradiation, the defects produced by electron beam irradiation are mainly independent vacancy-interstitial atom pairs (Frenkel pairs), and there are no new doping elements introduced into the material during the irradiation by electron beam with energy of several MeV, that is, electron irradiation is a relatively “pure” particle irradiation method. On the one hand, since the displacement threshold energy values of different atoms are different from each other, the type of defect during electron irradiation can be controlled by the energy of the electron beam. On the other hand, the electron fluence can determine the concentration of defects. Therefore, various defects of different concentrations can be generated by electron irradiation, thereby studying the influences of related defects on the magnetic, optical, and electrical properties of ZnO and TiO2. However, simulation calculations related to electron beam irradiation damage are relatively scarce. Therefore, in this work, the electron beam irradiation damage is taken as a research topic and the related theoretical simulation calculations are carried out, which lays a theoretical foundation for subsequent experimental researches. The size and the distribution of radiation damage (dpa) caused by point source electrons and that by plane source electrons with different energy values in ZnO and TiO2 are simulated and calculated through the MCNP5 program combined with the MCCM algorithm. The calculation results show that O atoms and Zn atoms can be dislocated when the electron energy values are greater than 0.31 MeV and 0.87 MeV in ZnO, respectively; while in TiO2, O atoms and Ti atoms can be dislocated when the electron beam energy values are greater than 0.12 MeV and 0.84 MeV, respectively. The dpa caused by point source electrons is mainly distributed in the longitudinal direction, and attenuates quickly in the lateral direction; on the contrary, the dpa caused by plane source electrons first increases and then decreases with the augment of the electron incidence depth, and the unevenness of the dpa distribution becomes more serious with the increase of the electron energy. Therefore, for each of ZnO and TiO2, the dpa will be relatively even distribution when the thickness of the sample is about 0.25 mm. Furthermore, the calculation results of the electron energy deposition show that the size of the energy deposition area is closely related to the electron beam energy. At the same time, with the increase of the electron beam energy, the position where the maximum energy deposition appears gradually moves to the inside of the sample, and the entire energy deposition area has a tendency to lean forward. Keywords:electron irradiation/ Monte Carlo assited classsical method algorithm/ ZnO/ TiO2
全文HTML
--> --> -->
2.计算模型及方法首先利用MCNP5软件分别对点源电子束及面源电子束在纤锌矿ZnO和金红石TiO2中的输运过程进行模拟. 模拟的几何结构示意图如图1所示. 图 1 MCNP5采用程序模拟几何结构图 (a) 点源电子束; (b) 面源电子束 Figure1. Schematic diagram of the geometry structure used by MCNP5 program: (a) Point source electron; (b) plane source electron.
式中$N$为各个体元内总的原子数. 鉴于离位阈能的选取及离位损伤截面的计算结果, 为更有利于探究缺陷类型及缺陷浓度的影响, 本文在计算dpa及能量沉积的过程中, 电子束的能量选定为0.5, 0.8, 1.0和1.5 MeV, 这是由于电子束能量为0.5及0.8 MeV时, 两种样品中只产生O空位, 而电子束能量在1.0和1.5 MeV时不仅可以使O原子发生离位, 也会使得Zn原子和Ti原子离位. 点源电子束产生的dpa在X和Y方向是对称分布的, 因此本文只给出了入射能量分别为0.5, 0.8, 1.0和1.5 MeV的点源电子在ZnO中产生的dpa的分布, 以图1(a)中Y = 0的位置的体元为例, dpa分布如图5所示. 可以看出, 点源电子束在ZnO内部造成的辐照损伤主要沿着纵向分布, 而在横向方向则会很快衰减, 随着电子束能量的增加, 分布区域有前倾的趋势. 点源电子束在TiO2中产生的dpa和在ZnO中产生的dpa具有类似的分布. 图 5 点源电子束在纤锌矿ZnO中产生的dpa的分布 (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV Figure5. Distribution of dpa produced by Point Source Electron in wurtzite ZnO: (a) 0.5 MeV; (b) 0.8 MeV; (c) 1.0 MeV; (d) 1.5 MeV.
图6给出了1.0 MeV的电子辐照金红石TiO2时在不同深度处产生的dpa的分布, level 1—level 4分别代表样品中0—0.1 mm, 0.1—0.2 mm, 0.2—0.3 mm, 0.3—0.4 mm深度的分层, 从图6可以看到, dpa在样品内部分布较为均匀, 边缘部分逐渐降低, 这是因为在边缘部分一些电子及次级光子会从样品表面逸出, 导致计数减小. 这与γ射线辐照在Lu1.8Y0.2SiO5和Lu0.7Y0.3AlO0.3中产生的dpa具有相似的分布[25]. 同时由于高能电子入射到材料中产生更多的次级光子及次级电子, 会使更多的原子发生离位, 从而使得dpa随着深度的增加呈现先增大后减小的趋势. 图 6 1.0 MeV电子辐照金红石TiO2时dpa的分布 Figure6. Distribution of dpa produced by 1.0 MeV electron in rutile TiO2.
图 8 dpamax与电子能量的关系曲线 (a) Wurtzite ZnO; (b) rutile TiO2 Figure8. Relationship between dpamax and electron energy: (a) Wurtzite ZnO; (b) rutile TiO2.
23.4.能量沉积 -->
3.4.能量沉积
电子束在ZnO和TiO2晶体中一方面通过使得靶原子离位产生能量沉积, 另一方面通过电离激发损失能量, 同时也会产生次级光子, 而次级光子又通过光电效应、康普顿散射和电子对效应等产生次级电子, 次级光子产生的次级电子在晶体中的能量沉积原理和入射电子是一致的, 即通过弹性碰撞或者电离作用能量沉积. 图8和图9分别给出了不同能量的理想点入射和平行束入射电子在ZnO中能量沉积的分布, 在模拟计算理想点源电子的能量沉积过程中, 设定电子从图1中的O点发射, 沿着Z轴垂直入射到样品内部. 图 9 不同能量的理想点入射电子在纤锌矿ZnO中的能量沉积的分布 Figure9. Distribution of energy deposition of ideal point source electrons with different energies in wurtzite ZnO.
电子在TiO2中的能量沉积分布与在ZnO中的相似, 并且由于ZnO对电子的吸收比TiO2强, 所以相同能量的电子在TiO2中的能量沉积范围比ZnO中大. 从能量沉积分布图(图10)可以看到, 不论是理想点源入射还是平行束入射, 能量沉积在X和Y方向是对称分布的; 能量沉积最大值出现的位置并不是在样品表面, 而是处于距表面一定深度的地方, 并且随着电子入射能量的增加, 这一深度逐渐增加, 在ZnO中, 0.5和1.5 MeV的电子能量沉积最大值分别出现在距表面约0.05和0.25 mm的位置, 而在TiO2中, 这一位置分别为0.1和0.5 mm. 能量沉积的范围随着入射电子能量的增加逐渐增大, 并且具有前倾的趋势. 图 10 不同能量的面源电子束在纤锌矿ZnO中的能量沉积的分布 Figure10. Distribution of energy deposition of plane source electrons with different energies in wurtzite ZnO.