1.School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China 2.The key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China 3.Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 62005286)
Received Date:01 April 2021
Accepted Date:10 July 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:The single-mode fiber (SMF) adaptive coupling device can efficiently and stably couple the space laser into SMF, which plays an important role in the fiber-based free space optical communication (FSOC) technology. Therefore, a novel corrector named adaptive fiber coupler (AFC) is developed and successfully used in the adaptive SMF coupling applications. However, in the FSOC system under long-range turbulent atmosphere, the closed loop performance of AFC will be seriously disturbed by the photoelectric conversion noise. This problem is studied in depth in this paper. The operational principle of the photoelectric conversion noise is analyzed, and the corresponding evaluation index isgiven. Furthermore, The numerical simulation experiments are conducted to study the specific influence of the photoelectric conversion noise. The results show that the averaged closed-loop coupling efficiency, control accuracy, and control bandwidth of AFC are seriously affected. According to the results, the empirical formula is given. This formula can be used to calculate the optical and electrical parameters that the AFC device should meet under the condition of strong noise interference. The theoretical and simulation results in this paper can provide a theoretical basis for designing the AFC device under long-range turbulent atmosphere. Keywords:free space optical communication/ adaptive SMF coupling device/ stochastic parallel gradient descent algorithm/ photoelectric conversion noise
全文HTML
--> --> -->
2.基于AFC的SMF自适应耦合装置图1展示了基于AFC装置的基本结构, 其中AFC由耦合透镜以及光纤端面定位器两部分组成. 在实际的光通信系统中, AFC装置的前端通常需要放置自适应光学系统, 用来补偿大气湍流引起的通信光束的高阶波前畸变[14,20,21]. 在装置工作过程中, 空间光束经过耦合透镜后聚焦在SMF端面, 同时光功率耦合进SMF中. 光纤分束器将SMF中的光功率分为两部分, 其中多数被传递至通信光端机, 剩余部分被传递至光电探测器并转换为电压信号, 即性能指标. SPGD算法控制器将性能指标转换为数字信号, 并据此生成一组二维控制电压至高压放大器, 后者将该电压放大后驱动光电端面定位器带动光纤端面寻找最优耦合位置, 使得光电探测器探测到的电压幅值(即性能指标幅值)最大化, 从而间接保证高效、稳定的SMF耦合效率. 图 1 基于AFC的SMF自适应耦合装置结构图 Figure1. Structure of the adaptive SMF coupling system based on AFC.
根据现有AFC装置的设计参数及被控器件响应特性, 本文设计了相应的仿真实验, 其基本结构与图1相同. 其中, 空间通信光束波长为1550 nm; 光束直径为D = 3.3 mm; 耦合透镜焦距为f = 15 mm; SMF的模场半径为w0 = 5 μm; 理想情况下, 空间光束在SMF端面的光强分布与SMF基模光强分布如图2所示. 图 2 艾里斑与SMF基模光强分布 (a) SMF基模光强分布; (b) 艾里斑光强分布; (c)截面光强分布 Figure2. Intensity distribution of the airy disk and the SMF’s fundamental mode: (a) SMF’s fundamental mode; (b) airy disk; (c) intensity distribution of the cross profile.
在本小节的仿真中, 假设光通信系统主光学天线的直径为100 mm (放大倍30.3倍), 通信距离L为5 km, 大气折射率结构常数$ C_n^2 $为固定值1.0 × 10–13, 可以计算出湍流引起的光束到达角起伏方差为[24]
经计算得, 主光学天线位置的光束到达角起伏方差 $ \langle$α2$\rangle $ 约为6.1 × 10–9 rad. 因此, 耦合透镜位置的光束到达角起伏方差约为1.9 × 10–7 rad. 将该数值折算到SMF端面, 可以得到光纤端面对准偏差大约为6.5 μm. 根据模场匹配原理, 理想情况下空间光束至SMF的耦合效率η为81.45%. 当光纤端面存在一定的对准偏差r0时, η的变化情况如图3所示. 可以看到, 当r0为6.5 μm时, SMF的耦合效率η下降至12%左右. 因此, 实现SMF自适应耦合至关重要. 图 3 SMF耦合效率与光纤端面对准偏差的关系 Figure3. Relationship between the SMF coupling efficiency and the position deviation of the fiber tip.
在AFC装置中, 光纤端面定位器的驱动器件为双压电陶瓷, 其频率特性能够由双二阶数字滤波器来近似拟合[25]. 根据现有设备的频率特性测试情况, 在仿真中光纤端面定位器的传递函数如(9)式所示, 其中采样频率为100 kHz. 图4展示了对应的波特图. 可以看到驱动器件在2.7 kHz左右具有一阶谐振峰. 图 4 光纤端面定位器的频率响应特性 Figure4. Frequency characteristic of the locator of the fiber tip.
式中, tconv为SPGD算法收敛时间, Tspgd为SPGD算法迭代间隔; nconv为SPGD算法收敛步数, 定义为耦合效率首次上升至最优值的90%(即73.26%)所对应的平均迭代次数. AFC装置的闭环带宽fs随CESNR的变化曲线如图8所示, 其中CESNR的数值变化范围为68.9—32.5 dB. 图 8 AFC装置闭环带宽与耦合效率信噪比的关系 Figure8. Relationship between the control band width of AFC system and the value of CESNR.