Fund Project:Project supported by the Shenzhen Basic Research Foundation, China (Grant No. JCYJ20180305124822272).
Received Date:28 April 2021
Accepted Date:14 June 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:Monolayer molybdenum disulfide is an ideal material for making various micro/nano components and flexible electronic devices. However, the strain of material caused by the environment is a key problem that cannot be avoided in practical applications, and the electronic structure of material will also change with the strain. In this paper, the effect of tensile strain on the photoelectric properties of monolayer MoS2 is studied based on first principles and tensile tests after wet transfer. The results are obtained as follows. 1) Intrinsic monolayer MoS2 is a direct bandgap semiconductor with a band gap of 1.68 eV, the highest peak of the absorption coefficient curve is nearly 10.92 eV, and a maximum absorption coefficient is 1.66 × 105 cm–1. 2) A small tensile strain (1%) will result in the transition from direct to indirect gap for monolayer MoS2. With the increase of strain, the feature of the indirect gap can be preserved but the gap decreases linearly. The gap will decrease to 0 eV when the tensile strain is 10%, and the absorption coefficient curve is red-shifted as a whole with strain. 3) The in-plane mode peak and the out-of-plane mode A1g peak in Raman spectra are re-dshifted with stretching by tensile test of wet-transferred monolayer MoS2, and the difference in peak frequency between the two peaks is maintained at about 18.6 cm–1. The strong emission peak of an exciton of monolayer MoS2 is observed at 1.83 eV of the photoluminescenc spectrum. With the increase of tensile strain, the relative strength of the peak decreases and is linearly re-dshifted, which means that the band gap decreases linearly. It is consistent with the theoretical calculation result. Keywords:molybdenum disulfide/ tensile strain/ energy bands/ first principles
图4是不同拉应力下计算得到的单层MoS2能带结构图. 从图4可以看出, 当开始施加拉应变(1.0%)时, 价带的最高点便发生了转移, 从布里渊区的K点转移到Γ点, 但是导带的最低点依旧保持在K点处, 因此单层MoS2的能带从直接带隙转变成了间接带隙. 随着拉伸的增大, 其禁带宽度逐渐变小, 并且一直保持为间接带隙的特点. 从未施加应变到施加5.0%的应变的过程中, 单层MoS2的禁带宽度从1.68 eV减小到0.912 eV. 当拉伸应变为10%时, 禁带宽度降为0 eV, 此时单层MoS2由半导体转变为金属. 图 4 不同拉应变下(1.0%?10%)单层MoS2的能带结构图 Figure4. Band structure diagram of monolayer molybdenum disulfide under different tensile strains (1.0%?10%).
图5(a)给出了价带最高点K和次高点Γ点随应力变化的能量值. 当拉伸不断施加时, 价带次高点Γ点的能量值仅从–0.085 eV缓慢上升到–0.081 eV; 而K点的绝对能量由–0.066 eV下降到–0.645 eV. 可以得知转变为间接带隙的原因: 价带位置处的K点和Γ点的能量变化对拉伸的敏感程度不同. 其根本原因在于拉伸应变改变了原子位置的弛豫, 间接影响原子间的成键性质和成键强度, 能带结构随之发生改变[28]. 单层MoS2的禁带宽度随拉应变的变化关系如图5(b)所示, 数据显示禁带宽度随拉应变的增大而线性减小. 图 5 (a)最高价带(VBM) 上Γ点与K 点的能量随应力增大的变化情况; (b)单层MoS2的禁带宽度随拉应变的变化曲线 Figure5. (a) Variation of energy of point Γ and point K on the maximum price band (VBM) with the increase of stress; (b) variation curve of band gap width of monolayer MoS2 with tensile strain.
图6为单层MoS2在本征状态和拉应变5%下的总态密度(DOS)和部分态密度(PDOS)图, 其中黑色为DOS图, 彩色为PDOS图. 价带的最高点主要有两种原子的轨道贡献, 分别为钼原子的d轨道和硫原子的p轨道. 在能级–6 eV到–1 eV的范围内, Mo-d轨道和S-p轨道态密度形状相似, 表明两者间共用电子程度高, 对应于Mo-d轨道和S-p轨道间形成的类似于σ键的相互作用. 在–1 eV到Fermi能级范围内, Mo-d轨道和S-p轨道间形成强度较弱的类π键的相互作用. 这种作用对应变极为敏感, 导致施加应变后能带结构发生显著变化[16,29]. 图 6 单层MoS2在(a)无应变和(b)拉应变5%下的态密度图 Figure6. Electron density of states of monolayer MoS2 for (a) zero strain and (b) 5% tensile strain.
图8(a)和图8(b)分别为通过湿法转移到Si衬底的单层MoS2的光学显微镜(optical microscope, OM)图像和PL光谱图, 图8(c)和图8(d)分别为转移到PDMS衬底上的单层MoS2的OM图像和实物图. 在PL光谱的1.83 eV处观察到单层 MoS2的A激子的强发射峰, 这表明转移后的单层MoS2膜仍然是高质量的. 单层MoS2的A激子的PL峰可归因于1.84 eV的负三极峰和1.88 eV的中性激子峰的共同作用, PL光谱中负三极峰的存在能表明1L MoS2具有电n型特征[30]. 图 8 单层MoS2连续膜通过湿法转移后, (a)转移到Si衬底上的OM图像, (b)转移到Si衬底上的PL光谱, (c)转移到PDMS衬底上的OM图像, (d)转移到PDMS衬底上的实物图 Figure8. (a) OM images transferred to Si substrates, (b) PL spectra transferred to Si substrates, (c) OM images transferred to PDMS substrates, (d) real figures transferred to PDMS substrates when monolayer MoS2 continuous film is transferred by wet method.
对转移到柔性PDMS上的单层MoS2通过拉曼光谱仪(使用532 nm DPSS激光进行激发)下进行不同拉伸应变下的测试, 所施加的应变近似为ε = τ/R, 其中2τ是这项工作中使用的PDMS衬底的厚度. 图9给出了单层MoS2/PDMS的拉曼光谱、PL光谱及相应峰位在不同拉伸应变下的变化趋势图. 随着拉应变的增大, 拉曼光谱图中面内模式$ {\mathrm{E}}_{2\mathrm{g}}^{1} $和面外模式A1g峰之间的峰值频率差始终保持在18.6 cm–1左右, 两峰都会发生红移, 是由于拉伸应变引起的声子软化[11]. PL谱峰值强度随着拉应变的增大而降低, PL峰位红移, 代表光学带隙的减小, 观察到的PL峰位置的移动趋势以及所施加的应变的光谱强度降低归因于应变引起的带隙和PL效率的下降, 这与理论预测一致, 峰值红移近似线性改变. 图 9 对单层MoS2/PDMS进行0%?1.8%拉伸应变时的(a)拉曼光谱, (b)拉曼峰的改变, (c) PL光谱, (d) PL峰的改变 Figure9. (a) Raman spectroscopy, (b) change of Raman peak position, (c) PL spectroscopy, (d) change of PL peak position when monolayer MoS2/PDMS is stretched by 0%?1.8%.