1.Faculty of Science, Yibin University, Yibin 644007, China 2.South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
Fund Project:Project supported by the Pre-Research Project of Yibin University, China (Grant No. 2019YY06) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-003)
Received Date:20 April 2021
Accepted Date:22 June 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:The glass transition temperature and nonlinear mechanics of polymer nanocomposites are strongly influenced by the short fibers. In this paper, coarse-grained molecular dynamics simulations are used to study the effects of single-walled carbon nanotube (CNT) content on the glass transition, diffusion coefficient, viscosity and nonlinear mechanical properties of poly(methyl methacrylate) (PMMA)/CNT nanocomposites. The glass transition temperature Tg is very important for the application of the materials. The Tg is related to the specific volume of the system. Generally, the location of the discontinuity on the curve of specific volume vs. temperature is the position of Tg. Our simulation results show that the Tg of PMMA/CNT composite increases with CNT content, and the result is consistent with the experimental value (434 K). This increase of Tg is evidently due to the presence of CNTs, which imposes a limit on the mobility of the molecules of PMMA. For the free volume in the liquid state, recent experiments pointed out that the molecular mutation is relatively easy to occur because the unoccupied volume is large. Further analysis of the diffusion coefficient of the PMMA/CNT indicates that the difference in diffusion characteristic occurs above the glass transition temperature, and the diffusion coefficient of PMMA system and PMMA/CNT system are the same below the glass transition temperature. Polymer materials in the service process will inevitably suffer the deformation, and the modulus and toughness of material are inversely proportional. Based on this problem, the nonlinear mechanical properties of short CNTs added PMMA composite are studied by nonequilibrium molecular dynamics. Our results show that the yield modulus increases with the CNT content increasing. However, the toughness is almost unchanged. In order to further understand the origin of stress of PMMA/CNT nanocomposites, the stretch ratio and orientation parameters of MPPA chains are also investigated in the present work. According to the stretch ratio and orientation parameters, it is not difficult to conclude that the stress-strain curve is mainly the result of the synergistic effect of molecular chain stretching and orientation. This work provides a theoretical guidance for further experiments and processing at the atomic and molecular level. Keywords:glass transition temperature/ nonlinear mechanics/ nanocomposites/ diffusion coefficient
全文HTML
--> --> -->
2.模型与计算方法本文使用了前人最近开发的CG模型. 基于CG模型, 构建了PMMA/CNTs聚合物纳米复合材料的体系. 在该模型中, 将每个甲基丙烯酸甲酯(C5O2H8)单体作为如图1(a)所示的原子质量为100.12 amu的珠子, 选择珠的中心作为单体的质量中心. CG模型也用于建模(5, 5) CNT, 将5个原子环映射成原子质量为600.55 amu的CG珠子(见图1(b)). 基于以上的单体模型, 本文构建了3种体系, 分别命名为PMMA, PMMA/10CNTs和PMMA/20CNTs. 其中, PMMA体系结构每根链含有200个珠子, 体系中包含200根链(40000个珠子). PMMA/10CNTs和PMMA/20CNTs体系分别包含10根和20根CNTs纤维, 每根CNT纤维包含30个珠子, 并且CNT在最开始的时候是无规分布在PMMA熔体结构中, 图2给出了PMMA及其CNT在PMMA中的分布图. 图 1 (a) 1个PMMA聚合物链的3个单体及其由3个珠子组成的CG模型; (b) 1个(5, 5)带有10个碳原子环的CNT及其由3个珠子组成的CG模型 Figure1. (a) Three monomers of a PMMA polymer chain and its CG model made of three beads; (b) a (5, 5) CNT with 10 rings of carbon atoms and its CG model made of three beads.
图 2 PMMA及PMMA/CNTs结构示意图 Figure2. Schematic diagram of PMMA and PMMA/CNTs.
其中, r(t0)是粒子的初始坐标, r(t+t0)是粒子在时刻t的坐标. 通过MSD (图4(a), PMMA/10CNTs与PMMA/20CNTs对应的MSD图已略去)与扩散系数满足的关系(4)式, 图4(b)给出了PMMA, PMMA/10CNTs及PMMA/20CNTs体系中PMMA分子链整体运动对应的扩散系数随着温度的变化. 从图4(b)不难发现, 很明显CNTs纤维加入之后PMMA的扩散系数在不同的温度下会发生明显的降低. 而且各体系都是以玻璃化温度为转变点发生突然的增长. 这一点也印证了实验上的自由体积假说理论. 图 4 (a) PMMA体系对应的MSD; (b) PMMA, PMMA/10CNTs及PMMA/20CNTs体系不同温度下对应的扩散系数 Figure4. (a) Evolution of mean square displacement (MSD) of PMMA system; (b) the diffusion coefficient of PMMA, PMMA/ 10CNTs and PMMA/20CNTs under the different temperatures.
23.2.PMMA/CNTs聚合物纳米复合材料非线性力学特性 -->
3.2.PMMA/CNTs聚合物纳米复合材料非线性力学特性
聚合物材料在服役过程中难免要遭受外力场的作用, 深刻认识外力作用下材料的结构和性能关系不仅具有重要的学术价值, 也是决定材料能否长期有效服役的关键因素. 聚合物纳米复合材料凝聚态结构是由大量的高分子依靠分子内和分子间的范德瓦耳斯相互作用凝聚而成, 而且材料最后的拉伸性能是这些微观结构相互作用的结果. 因此, 非常有必要探究聚合物纳米复合材料结构与其非线性力学关系. 图5(a)中, 我们施加了一个恒定的拉伸速率1×109 s–1来探究PMMA, PMMA/10CNTs及PMMA/20CNTs结构体系的应力-应变过程, 温度为室温(300 K). 随着应变的增加, 应力会经历典型的弹性形变、应力屈服、应力软化、应变硬化及断裂区. 进一步观察, 不难发现随着CNTs的含量不同, PMMA结构对应的力学性能会有很大的差别. 随着CNT的含量增加, 其对应的屈服模量也在不断的增加. 但是3个体系的断裂伸长率并没有发生太大的改变, PMMA/10CNTs相比于PMMA体系稍微有所增加, 但是随着含量的增加PMMA/20CNTs相比于PMMA就有所减小, 总体而言断裂应变的变化都不大. 图 5 PMMA, PMMA/10CNTs及PMMA/20CNTs体系在300 K下对应的应力-应变(a)、拉伸比(b)和取向参数(c)变化曲线 Figure5. Evolutions of stress-strain curves (a), stretch ratio (b) and orientational parameter (c) of PMMA, PMMA/10CNTs and PMMA/20CNTs under the temperature of 300 K.
聚合物纳米复合材料的力学特质主要由链构象对应的链结构微观拉伸比和链沿着拉伸方向的取向参数决定. 图5(b)和图5(c)分别给出了PMMA, PMMA/10CNTs及PMMA/20CNTs体系中PMMA分子链对应的链微观拉伸比和末端矢量取向参数. 采用$\lambda =({L-{L}_{0}})/{{L}_{0}}$计算链结构在宏观拉伸过程对应的微观拉伸比, 其中, L0和L分别表示链原始末端距和受到拉伸以后的末端距, 采用公式$P=\dfrac{3}{2}\cos$θ-$\dfrac{1}{2}$计算取向参数, 其中, θ代表末端矢量与拉伸方向的夹角. 不难发现, 最开始阶段CNTs含量越多, PMMA分子拉伸比增加得越快, 这也是为什么在弹性形变区CNTs含量越高, 其结构对应的模量越高. 但在3个应变之后, PMMA/10CNTs体系对应更高的拉伸比和断裂应变. 进一步分析取向参数, 不难发现同样是PMMA/10CNTs体系中PMMA分子取向参数最大. 根据拉伸比和取向参数不难得出, 应力-应变曲线主要是分子链拉伸和取向协同作用的结果. 除此之外, 还探究了不同温度对于PMMA, PMMA/10CNTs及PMMA/20CNTs结构体系的应力-应变过程的影响. 图6(a)—(c)给出了PMMA, PMMA/10CNTs及PMMA/20CNTs体系在不同温度下对应的应力-应变曲线. 不难发现, 玻璃化温度以下3个结构体系相比于玻璃化温度以上都发生了明显的应力软化现象及应变硬化现象. 而且, 随着CNTs纤维含量的增加, 硬化和屈服现象也越发得明显. 为了进一步探究相同过冷度下, 图6(d)给出了3个体系在过冷度(ΔT = Tg – T = 135 K)下的应力-应变曲线. 不难发现, 相同过冷度下随着CNTs含量的增加, 屈服强度明显的增加. 但是PMMA/20CNTs体系的断裂应变也会随着CNTs含量的增加而减小. 图 6 PMMA (a), PMMA/10CNTs (b)及PMMA/20CNTs (c)结构体系在不同温度下对应的应力-应变曲线及在相同过冷度(ΔT= 135 K)下3个体系结构对应的应力-应变曲线(d) Figure6. E of stress-strain curves of PMMA (a), PMMA/10CNTs (b) and PMMA/20CNTs (c) under the different temperatures and the same cooling depth (ΔT = 135 K)(d).
为了进一步说明PMMA, PMMA/10CNTs及PMMA/20CNTs结构体系在应力-应变过程的结构失效机制, 图7和图8给出了PMMA及PMMA/10CNTs结构的分子构象演化及其对应的原子维诺体积的变化图. 从局部结构维诺体积变化发现, PMMA及PMMA/10CNTs体系在屈服、软化过程及应变硬化过程并没有发生结构的断裂, 断裂发生在2次屈服软化点附近. 图 7 PMMA体系维诺体积随着应变的变化过程 Figure7. Voronoi volume of PMMA system under the different stain.
图 8 PMMA/10CNTs体系维诺体积随着应变的变化过程 Figure8. Voronoi volume of PMMA/10CNTs system under the different stain.