Fund Project:Project supported by Liaoning Provincial Department of Education Project, China (Grant No. LZGD2019003).
Received Date:25 April 2021
Accepted Date:29 May 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:The first-principles method based on density functional theory is used to study the effect of torsion deformation on the electronic structure and optical properties of gold-doped black phosphorene. The results show that the electronic structure of the gold-doped black phosphorene system is more sensitive to torsion deformation than that of the intrinsic black phosphorene system under torsion. The analysis of the energy band structure indicates that intrinsic black phosphorene is a direct band gap semiconductor. After being doped with gold, it can realize its transformation from semiconductor into metal. After the gold-doped black phosphorene system is twisted by 1°, the band gap is opened and becomes an indirect band gap semiconductor. As the torsion angle increases, the band gap of the intrinsic black phosphorene system increases slowly, while the band gap of the gold-doped black phosphorene system first decreases, then increases, and then decreases. From the analysis of the density of states, it is found that when the torsion angle changes from 0° to 5°, the intrinsic black phosphorene system has a strong sp orbital hybridization. The s orbit and p orbit contribute to the conduction band and the valence band, but the p orbit is better than the s orbit. The contribution to the total density of states is more, and the s orbital, p orbital and d orbital of the gold-doped black phosphorene system all contribute to the total density of states. From the analysis of optical properties, it is found that compared with the intrinsic black phosphorene system with a torsion angle of 0°, the intrinsic black phosphorene twisted system exhibits a blue shift at the absorption peak and reflection peak, and the gold-doped black phosphorene twisted system exhibits a blue shift in both absorption peak and reflection peak. Both the absorption peak and the reflection peak are red-shifted. Keywords:gold-doped black phosphorene/ torsion deformation/ electronic structure/ optical properties
表1本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的结合能 Table1.Binding energy of intrinsic black phosphorene system and gold-doped black phosphorene system under different torsion angles.
23.2.扭转变形对掺金黑磷烯电子结构的影响 -->
3.2.扭转变形对掺金黑磷烯电子结构的影响
黑磷烯的带隙是导带底部到价带顶部的能量差, 带隙的大小反映了在最小能量半导体中价电子被激发进入导带产生载流子所需的能量. 图3(a)是本征黑磷烯体系的能带图和态密度, 其中价带最大值(VBM)和导带最小值(CBM)都位于G点, 这说明本征黑磷烯是直接带隙的半导体, 带隙为0.899 eV, 这与之前的文献[19, 29, 31]基本一致. 图3(b)是掺金黑磷烯的能带结构和态密度. 结果表明, 掺金后价带穿过费米能级, 黑磷合金表现出金属行为, 这与文献[26]结论一致. 掺金对黑磷烯的带隙产生了较大的影响, 使其由半导体转变成金属. 从态密度分析来看, 本征黑磷烯在费米能级附近有一个间隙, 它的间隙与带隙相对应, 属于半导体系统. 掺金黑磷烯有分波跨过费米能级, 所以该系统为金属. 本征黑磷烯具有很强的sp轨道杂化, s轨道和p轨道对导带和价带均有贡献, 但p轨道相比s轨道对总态密度贡献更多, 在能量值约为–1.1 eV时, 出现总态密度的最大峰值. 掺金黑磷烯的s轨道、p轨道、d轨道对总态密度均有贡献. 在–2—2 eV能量范围内, 总态密度峰值的主要来源是p轨道贡献的结果, d轨道对这个区域的总态密度有一定的作用, 在能量值约为0.0381 eV时, d轨道出现态密度的最大峰值, 在费米能级附近d轨道比s轨道对总态密度的贡献更多. 金原子的掺杂, 引起了费米能级处态密度的增加, 态密度跨过费米能级区域. 因此, 金原子的掺杂使体系具有了一定的金属性质. 图 3 电子结构 (a) 本征黑磷烯能带图和态密度; (b) 掺金黑磷烯能带图和态密度 Figure3. Electronic structure: (a) Intrinsic black phosphorous band diagram and density of states; (b) gold-doped black phosphorous band diagram and density of states.
图4显示了本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的能带结构和态密度, 并将带隙值列于表2, 两者带隙的变化见图5. 图4(a)—图4(e)是本征黑磷烯体系在扭转角为1°—5°下的能带结构和态密度. 图4(f)—图4(j)是掺金黑磷烯体系在扭转角为1°—5°下的能带结构和态密度. 图 4 (a)?(e)本征黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度; (f)?(j)掺金黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度 Figure4. (a)?(e) The energy band diagram and density of states of intrinsic black phosphorene at twist angles of 1°, 2°, 3°, 4° and 5°; (f)?(j) gold-doped black phosphorene at twist angles are Band diagram and density of states at 1°, 2°, 3°, 4° and 5°.
扭转角 带隙
0°
1°
2°
3°
4°
5°
本征黑磷烯/eV
0.899
0.905
0.908
0.911
0.914
0.918
掺金黑磷烯/eV
—
0.758
0.753
0.762
0.703
0.534
表2本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的带隙值 Table2.Band gap values of intrinsic black phosphorene system and gold-doped black phosphorene system under different twist angles.
图 5 本征黑磷烯和掺金黑磷的能带随扭转角的变化 Figure5. The energy bands of black phosphorene and gold-doped black phosphorene change with twist angle.