1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2.Shanghai Key Labortary of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China 3.Shanghai Customs Industrial Products and Raw Materials Testing Technology Center, Shanghai 200135, China
Fund Project:Project supported by the National key R&D Program (Grant Nos. 2018YFF01013000, 2019YFC0810900), the National Natural Science Foundation of China (Grant No. 61671302), the Shanghai Shuguang Program, China (Grant No. 18SG44), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 61988102), the Shanghai Central Government Guided Local Science and Technology Development Project, China (Grant No. YDZX20193100004960), the Scientific Research Project of the General Administration of Customs, China (Grant No. 2020HK251).
Received Date:08 March 2021
Accepted Date:02 June 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:The active modulation of the amplitude and phase of terahertz wave has been widely adopted in terahertz functional devices. The current metal-insulator-metal metasurface structure combined with two-dimensional materials such as graphene can realize dynamic control of terahertz amplitude/phase, but it has some disadvantages such as less freedom of control (voltage or light intensity), complex processing technology and high price of metasurface structure. In this article, we propose a prism-coupled matel-insulator-graphene (MIG) phase regulation structure. This structure can not only control the phase by adjusting the Fermi level in the usual way, but also change the intrinsic loss and radiation loss of the structure by adjusting the thickness of the air gap and the number of layers of pre-spread graphene, so that the phase of the structure can be controlled, which is determined by the difference between intrinsic loss and radiation loss of the fabric, which is closely related to this structure staying in the under-coupling/over-coupling state. The adjustment of the structural phase can also lead the magnitude of the terahertz Goos–H?nchen(GH) displacement and its positive sign and negative sign to be selected. Furthermore, it is shown that the under-coupling state and the over-coupling state of the structure have an important effect on the coincidence of the Goos–Hanchen (GH) displacement. The results show that by dynamically adjusting the thickness of the air gap and the Fermi level of graphene, and changing the eigenloss and radiation loss of the system, the phase regulation can be achieved. Finally, the transition from overdamped to underdamped state is realized. In this physical process, the GH displacement of the system will also change obviously. This paper puts forward the structure of the process with simple processing technology (no need to microstructure), tunable high degrees of freedom (available graphene Fermi level and air gap dynamic regulation, also could be regulated and controlled by controlling the graphene layers) in comparison with the phase modulator of metal-insulator-metal super surface structure. The results of this paper open up a new way of developing the multi-parameter tunable terahertz sensor components. Keywords:terahertz/ graphene/ phase transition/ Goos–H?nchen shift
式中, KB为波尔兹曼常数; ω为角频率; $\hbar $为普朗克常数; T为温度; Γ为散射率; μc为化学势, 与材料掺杂浓度及偏压相关, μc = Ef·e, 其中Ef, e分别表示费米能级和电子电荷. 根据(1)式, 可以得到石墨烯的电导率实部和虚部与频率的关系, 如图2所示. 电导率与石墨烯的介电常数的关系如下所示: 图 2 不同费米能级下石墨烯电导率的实部虚部随频率的变化曲线 (a) 石墨烯电导率实部 (b) 石墨烯电导率虚部 Figure2. Curves of real and imaginary parts of graphene conductivity with frequency at different Fermi levels: (a) The real part of graphene conductivity; (b) the imaginary part of graphene conductivity.
图3(a)和图3(b)通过改变石墨烯的费米能级, 得到的反射率和相位随着频率变化的对应关系. 从图3(a)和图3(b)可以看到, 当费米能级为0.2 eV时, 在共振频点0.285 THz处的反射率最低, 图3(a)中的插图给出了共振频点处石墨烯层附近的Ey电场分布, 表明入射太赫兹波几乎完全耦合进MIG结构中并成功激发了石墨烯等离激元. 随着费米能级的增加, 共振频点蓝移, 并且系统经历由欠阻尼到过阻尼的状态. 在MIG结构形成的石墨烯等离激元共振腔中存在两种损耗, 即本征吸收损耗和辐射损耗. 当辐射损耗小于本征吸收损耗时, 结构表现出电共振响应, 我们称其为欠阻尼区域, 此时反射相位变化范围为360°; 当辐射损耗大于本征吸收损耗时, 结构表现出磁共振响应, 我们称其为过阻尼区域, 此时反射相位变化范围小于180°; 当辐射损耗等于本征吸收损耗, 系统处于临界阻尼状态[20]. 图3(c)是随着石墨烯费米能级改变, 系统的GH位移与频率的关系曲线. 从图3(c)可以看到, 费米能级从0.15 eV增加到0.2 eV时, 系统的GH位移发生了突变, 如图3(d)中所示. 图 3 在不同费米能级下, 系统的反射率(a)、相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随费米能级的变化产生的突变 Figure3. The reflectance(a), phase (b), and GH shift (c) of the system are corresponding to frequency at different Fermi levels; (d) GH shifts with respect to Fermi levels.
23.2.空气层厚度 -->
3.2.空气层厚度
接下来, 通过改变气体层厚度, 来得到系统的反射和相位随着频率的变化情况. 如图4(a)所示. 在s = 100 μm时, 系统的反射率近乎为0, 此时太赫兹波几乎完全耦合进系统中. 由图4(b)可以看出, 在空气层厚度由70 μm增加到100 μm时, 系统由欠阻尼状态转变为过阻尼状态. 图4(c)是改变气体层厚度系统的GH位移随着频率的变化情况. 在空气层厚度由70 μm增加到100 μm时, 系统的GH位移同样存在突变的情况. 图4(d)给出了GH位移的大小随空气隙厚度的变化产生突变的对应关系, 在完美耦合点处, 空气隙的微小变化可以导致GH位移的巨大变化, 说明本结构可作为灵敏的位移传感器. 图 4 在不同的空气层厚度下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随空气隙厚度的变化产生的突变 Figure4. The reflectance(a), phase (b) and GH displacement (c) of the system are corresponding to the frequency at different air layer thicknesses; (d) GH shifts with respect to air layer thicknesses
23.3.石墨烯层数 -->
3.3.石墨烯层数
如图5所示, 当费米能级为0.2 eV时, 太赫兹近乎完全耦合进MIG结构中, 反射强度会急剧衰减. 因此, 选择费米能级为0.2 eV, 通过改变石墨烯的层数来进行调控. 图5(a)和图5(b)为改变石墨烯的层数来对系统的反射率和相位进行调控. 通过对石墨烯层数由1层增加到8层, 反射率经历了先降低后增高的过程. 从图5(b)可以看出, 系统在小于4层石墨烯的时候, 系统的反射相位随着频率的变化大于180°, 此时系统表现出欠阻尼状态; 而当石墨烯层数大于4层的时候, 随着频率的变化, 系统的反射相位变化小于180°, 此时系统表现出过阻尼状态. 图5(c)为此时石墨烯层数由1层增加到6层时, 系统的GH位移随着频率的变化情况. 可以看到, 当石墨烯厚度由4层增加到5层时, 系统的GH位移存在突变, 这与系统的阻尼状态相匹配, 如图5(d)所示. 图 5 在不同的石墨烯层数下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随石墨烯层数的变化产生的突变 Figure5. The reflectance (a), phase (b), and GH shift (c) of the system are corresponding to frequency at different graphene layers; (d) GH shifts with respect to number of graphene layers.
本节分析待测样品折射率对系统反射率和相位的影响, 显示该结构在传感方面的潜在应用, 结果如图7所示. 从图7可以看到, 随着样品折射率升高, 反射率近乎不变, 说明对反射率的传感性能不佳. 但是, 从图7(d)的GH位移图谱却可以清晰地看到各个反射率的共振频点以及此时的GH位移. 这从另一方面显示了GH位移图谱在传感方面的优势. 而且相位的变化就可以引起GH位移方向和大小的剧烈变化, 这表明GH位移在传感的灵敏度上有着反射率中共振频点平移和相位平移所不具有的独特优势. 图8表示了反射共振频率(图8(a))和GH位移强度(图8(b))随折射率的变化图线. 从图8可以看出, GH位移的灵敏度达到2.1 × 104λ/RIU 其隔离度与区分度都优于反射共振频率灵敏度. 图 7 在空气腔中(a)不同的折射率变化下, 系统的反射率(c), 相位(b)和GH位移(d)随频率的对应关系 Figure7. The reflectance (c), phase (b) and GH displacement (d) of the system as a function of frequency under different refractive index changes in the air cavity (a).
图 8 (a) 反射共振频率随折射率的变化(灵敏度为160 GHz/RIU); (b) GH位移强度随折射率的变化(灵敏度为2.1×104λ/RIU) Figure8. (a) Reflection resonant frequency as a function of refractive index (sensitivity is 160 GHz/RIU); (b) GH shift intensity as a function of refractive index (Sensitivity is 2.1 × 104λ /RIU).