Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 21961132023, 11774026)
Received Date:03 July 2021
Accepted Date:26 July 2021
Available Online:15 August 2021
Published Online:20 November 2021
Abstract:Dynamics of exciton-exciton annihilation (EEA) in molecular aggregates is closely related to its luminescence characteristics and energy transfer. It is meaningful to uncover energy and charge transfer process in molecular systems. Therefore, studying the dynamics of exciton is important for simulating photosynthesis in nature and analyzing the transport process of photocarriers. In this paper the weak coupling approximation is adopted to obtain the rate equation in the framework of density matrix theory. The relation among the intermolecular distance, exciton state density, excited state dipole moment and exciton-exciton annihilation dynamics is studied by the rate equations. It is found that the decrease of intermolecular distance leads the generation rate of higher-order excited states to increase, resulting in the obvious S-shaped decay characteristics. Moreover, the dipole moment of the higher-order excited state is the key factor of the exciton fusion process, and the greater the exciton density, the more easily the exciton fusion process occurs. Therefore, the reduction of intermolecular distance and the increase of the dipole moment of the higher-order excited state make the nearest neighbor molecules have a strong coupling, resulting in a high generation rate of the higher-order excited state. It is found that the evolution processes of the first excited state in different exciton densities are consistent with the experimental results of the excitation of OPPV7 monomer (PPV oligomers of 7) at a low excitation energy, and the excitation of OPPV7 aggregates at different excitation energy levels. It can be observed that the exciton decay rate is faster under the excitation of the strong external field. Using the quantum wave packet under optical excitation as the initial state, the excited state dynamics is simulated at different exciton energy levels. It is found that the exciton state can maintain good locality within a few hundreds of femtoseconds, which shows that the exciton state is a coherent superposition state, and its local characteristics are related to the excitation energy level. These conclusions are applicable to the aggregations whose single molecule has an energy level of ${E_{mf}} \approx 2{E_{me}}$, and also provide a reasonable reference for the exciton-exciton annihilation process under optical excitation. Keywords:exciton-exciton annihilation/ quantum wave packet/ molecular aggregates/ energy transfer
在弱耦合近似下的率方程可以计算分子链中的分子全部被激发至其第一激发态时激子的融合过程和湮灭过程. 图2给出了分子间距离${\varDelta _{m, m \pm 1}}$分别为1.2 nm, 1.5 nm和2.5 nm, 初始第一激发态占据数${P_m}\left( {t = 0} \right)$为1.0时对应的第一激发态和高阶激发态的电子占据随时间的变化. 当分子间距离为1.2 nm时, 第一激发态随时间的变化出现了明显的S型, 说明第一激发态的衰变过程受到激子融合过程的影响而变缓. 这里先理想假设所有分子的第一激发态被激发, 在分子间耦合较强的情况下(${\varDelta _{m, m \pm 1}}$ = 1.2 nm和1.5 nm), 由于融合耦合强度${K_{mn}}$较大(–4.63 meV和–2.37 meV), 一部分高阶激子在10 ps内由激子融合过程产生(见图2中的插图), 高阶激发态的产生率也较高(大于20%). 若分子间耦合较小(${\varDelta _{m, m \pm 1}}$ = 2.5 nm), 激子的融合过程在0.1—1 ps内产生, 且高阶激子态产生率很低. 激子融合过程虽然不依赖于波函数的交叠, 但分子间距离大, 相互作用小是高阶激子态产生低的主要原因. 说明当分子间距离较小时, 分子间相互作用较强, 提高了高阶激发态的产生率. 图 2 不同分子间距离${\varDelta _{m, m \pm 1}}$下的J型分子聚集体的平均第一激发态和高阶激发态占据数动力学过程(${m_{m\left( n \right)}}= $$ 0.8~\rm D$).插图: 前100 fs的J型分子聚集体的平均激发态占据数和时间的线性关系图 Figure2. Population of the average first excited state and higher excited state of the J-type molecular aggregates with the distance between molecules${\varDelta _{m, m \pm 1}}$ (${m_{m\left( n \right)}}= $$ 0.8~\rm D$). Inset: Linear graph of the population of the average first excited state and higher excited state by the J-type molecular aggregates in the first 100 fs versus time.
图3给出了分子间距离为1.2 nm, 第一激发态到高阶激发态间的跃迁偶极矩${m_{{{m}}\left( n \right)}}$为0.1$~\rm D$, 0.8$~\rm D$和8.0$~\rm D$对应的高阶激发态和第一激发态的动力学过程图. 当${m_{{ {m}}\left( n \right)}} \ll {d_{{ {m}}\left( n \right)}}$时, 高阶激发态的产生率只有5%左右. 若令${m_{m\left( n \right)}}={d_{{ {m}}\left( n \right)}}$时, 在5 fs的时间内激子融合过程即刻完成, 激子融合的相干时间远小于随之发生的湮灭过程的湮灭时间, 出现了更明显的S型特征, 说明高阶激发态的偶极矩是激子融合过程的关键因素. 在${m_{m\left( n \right)}}={d_{{ {m}}\left( n \right)}}$(蓝线)的极端条件下分子的基态、第一激发态和高阶激发态的产生率在10 fs时间内各占1/3, 达到瞬间平衡. 与图2的黑线比较可以看到, 在最近邻分子间间距较小(${\varDelta _{m, m \pm 1}}$ = 1.2 nm)的条件下, 激子的融合主要依赖于高阶激发态的偶极矩${m_{{ {m}}\left( n \right)}}$, 偶极矩越大, 融合过程越快, 相应的湮灭过程也较快, 当高阶激发态占据率相同时湮灭率趋于一致. 在率方程近似下计算的激子动力学过程可以得到与相关实验一致的结果, 其他关于高阶激发态衰减率r和聚集体湮灭率的讨论参见文献[23]. 图 3 不同高阶激发态偶极矩${m_{m\left( n \right)}}$下的J型分子聚集体的平均第一激发态和高阶激发态占据数动力学过程; 插图: 前100 fs的J型分子聚集体平均激发态占据数和时间的线性关系图 Figure3. Population of the average first excited state and higher excited state of the J-type molecular aggregateswith different dipole moment of higher excited state${m_{m\left( n \right)}}$.Inset: Linear graph of the population of the average first excited state and higher excited state of the J-type molecular aggregates in the first 100 fs versus time.
图4给出了分子聚集体中的激子数分别为1, 5, 10, 20 (对应的初始第一激发态占据数${P_m}\left( {t = 0} \right)$ = 1.0, 0.5, 0.25, 0.05)用率方程模拟的总的激发态占据数随时间变化的动力学过程. 从图4中小插图中能够看出, 激子密度越大, 激子融合过程越容易发生. 并且随着分子聚集体中激子密度的增大, 第一激发态占据数随时间的变化出现了明显的S型特征曲线, 这是因为高阶激发态占据数的增大导致随后的弛豫过程中大量的高阶激子弛豫到第一激发态, 同时高阶激发态的弛豫时间要比第一激发态快得多从而使第一激发态的湮灭过程减慢. 图 4 不同激子数下J型分子聚集体的总第一激发态和总高阶激发态占据数动力学过程(${m_{m\left( n \right)}}=0.8~\rm D$); 插图: 前100 fs的J型分子聚集体总第一激发态占据数和总高阶激发态占据数和时间的线性关系图 Figure4. Thepopulation of the total first excited state and higher excited state of the J-type molecular aggregates with different numbers of excitons(${m_{m\left( n \right)}}=0.8~\rm D$). Inset: Linear graph of the population of the total first excited state and higher excited state of the J-type molecular aggregates in the first 100 fs versus time.
文献[11]中给出了用光谱监测OPPV7(聚对苯乙炔类)单体和在不同激发功率下监测OPPV7 (溶剂: 四氢呋喃(THF))聚集体的信号衰减速率随时间的变化曲线. 如图5(a)所示, 外场的激发功率越强, 衰减速率越大, 表明分子聚集体内的多激子产生率就越高. 图5(b)是20个分子组成的分子聚集体中有不同激子数时, 对应的归一化的第一激发态随时间演变的动力学过程. 比较图5(a)和5(b)可以发现, 本文理论计算结果与文献[11]的实验结果非常一致, 在25 μW功率下激发OPPV7单体的信号衰减速率与理论计算的分子链中初始态有一个激子的第一激发态随时间的湮灭率一致. 分子链中初始态有5个激子、10个激子和20个激子的第一激发态随时间的湮灭率与在10 μW, 50 μW和600 μW功率下激发OPPV7聚集体的信号衰减曲线相比一致. 在激子单体模型中由于没有融合过程, 动力学过程由分子第一激发态的内转换过程决定. 外场越强, 聚集体内的激子数越多, 融合过程越明显, 在纳秒量级内的衰变就越快, 激子-激子湮灭过程越容易发生. 图 5 (a)OPPV7单体和OPPV7(THF: water)聚集体的发射衰减速率[11]; (b)不同激子数下J型分子聚集体激发时的第一激发态湮灭过程(${m_{m\left( n \right)}}=0.1~\rm D$, ${r^{}}{\text{ = 200 p}}{{\text{s}}^{{{ - 1}}}}$) Figure5. (a) Emission decays of OPPV7 monomer and OPPV7 (THF: water) Aggregates [11]; (b) annihilation process of the first excited state when the J-type molecular aggregates are excited in different excitons(${m_{m\left( n \right)}}=0.1~\rm D$, ${r^{}}{{ = 200~ {\rm{p}}}}{{\text{s}}^{{{ - 1}}}}$).
23.3.光激发作用下激子湮灭过程的量子波包动力学模拟 -->
3.3.光激发作用下激子湮灭过程的量子波包动力学模拟
激子态是在光激发作用下产生的, 由于分子间的相互作用, 激子态在激发后不是局域在某个分子上, 而是在分子聚集体内巡游, 形成非局域激子态, 激子-激子湮灭过程实质上是非局域激子态的激发湮灭过程. 分子聚集体的非局域激子态在能量表象上形成一个有宽度的能带, 外场对分子聚集体的激发其实质是对这个能带上能级共振的有效激发. 激子态的激发效率直接与外场的激发频率以及脉冲的宽度和强度有关, 在率方程近似下原则上不能体现分子聚集体的能带效应, 也无法模拟非局域激子的湮灭过程. 在非局域激子态的研究中发现在共振激光激发作用下, 激子态在不同能级的电子占据呈现明显的量子波包形态. 在光激发作用下量子波包的量子动力学过程可以反映相关激子态的动力学演变情况. 在分子聚集体中模拟光激发作用下激子的动力学过程需要考虑分子聚集体内激子态的不同位形和激子相互作用, 将涉及更大的计算量, 本文将系统的哈密顿量对角化可以得到分子聚集体内的激子态能级以及相应的波包分布概率. 图6给出了有20个分子的J型聚集体对应的激子能级上的波包分布概率, 对应的能级分别是第一、三、五、七能级(能量由低到高), 偶数能级上的波函数为奇函数, 对应的偶极跃迁矩阵元为0, 使得相应的偶数能级为暗能级, 这里不再讨论. 奇数能级上的电子占据分布出现0, 2, 4, 6个节点波包. 图 6 J型分子聚集体哈密顿量对角化的前四个明能级对应的波包分布概率${\left| {{C_m}} \right|^2}$对应率方程的4种初始激发位形 (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级 Figure6. Four initial excitation configurations of the wave packet distribution corresponding (${\left| {{C_m}} \right|^2}$) to the first four bright energy levels corresponding to the diagonalization of the Hamiltonian of the J-type molecular aggregates: (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.
图7(a)—7(d)和图8(a)—8(d)给出了图6(a)—6(d)对应的波包分布下用率方程模拟的J型聚集体的第一激发态和高阶激发态的动力学演变过程图. 设分子链中有10个激子同时被激发, 由图8可以看到, 相应激子能级上的电子占据在${\varDelta _{m, m \pm 1}}$ = 1.2 nm的条件下在几百飞秒时间内保持很好的局域性, 在0.02—1 ps之间高阶激发态经历产生和衰变的过程. 高阶激发态与第一激发态的波包局域性保持一致, 都出现相同节点波包分布. 比较分子链中多个激子以及单激子态(在文中未给出)的动力学过程, 发现其随时间的演变规律大致相同. 除了多激子态的占据数较大以外, 激子的融合过程很类似, 在演变过程中保持其原有的局域性, 说明分子聚集体中的激子态是相干叠加态, 其局域特点与所在的激发能级有关. 图 7 J型分子聚集体(10个激子)激发时的第一激发态占据数演变(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm) (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级 Figure7. Population evolution of the first excited state when J-type molecular aggregates are excited (${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm): (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.
图 8 J型分子聚集体(10个激子)激发时的高阶激发态占据数演变(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm) (a)第一能级; (b)第三能级; (c)第五能级; (d)第七能级 Figure8. Population evolution of the higher excited state when J-type molecular aggregates are excited(${m_{m\left( n \right)}}=0.8~\rm D$, ${\varDelta _{m, m \pm 1}}$ = 1.2 nm): (a) The first energy level; (b) the third energy level; (c) the fifth energy level; (d) the seventh energy level.