Fund Project:Project supported by the National Nature Science Foundation of China (Grant Nos. 12074238, 11974232)
Received Date:24 March 2021
Accepted Date:12 May 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:The dynamic behavior of coated microbubble in a magneto-acoustic field is very significant for its application to therapy. In this paper, the radial vibration equation of microbubble is derived by placing the coated-microbubbles in a tube filled with magnetic fluid and considering the magnetic pressure on the magnetic fluid under the magneto-acoustic field. The dynamic equation is nondimensionalized by using characteristic quantities such as Weber number and Reynolds number. The effects of magnetic-acoustic field parameters and magnetofluid characteristics on the vibration behavior of the vibration system are analyzed by the Runge-Kutta method. The results show that the magnetic field can prevent the collapse and make bubble oscillate stably. When the acoustic field is constant, the magnetic field can stabilize the oscillation of the microbubble and increase the equilibrium radius of the oscillating microbubble. The stronger the magnetic field is, the more obvious the influence of magnetofluid magnetisability χm on the vibration of the microbubble is and the stronger the nonlinear of the transient response of the microbubble is when the magnetic field is larger. In addition, the larger acoustic field parameters will enhance the response of oscillating microbubble to magnetic field. The larger the magnetic field is, the weaker the influence of acoustic parameters on the oscillations of microbubble is. Also, the transient response of microbubble is obviously nonlinear, but the steady-state response keeps the reciprocating oscillation with small amplitude. It can be seen that the adjusting of the magneto-acoustic field is beneficial to realizing the stable oscillation of microbubble in the blood vessel and avoiding collapse. Keywords:magnetic-acoustic composite field/ finite tube/ coated microbubble/ vibration
全文HTML
--> --> -->
2.理论模型如图1所示, 一长度为2L、直径为D, 两端开口的刚性管内充满密度和黏度分别为ρ和η的超顺磁性流体. 现将一个初始平衡半径为R0的球形包膜微泡置于该管的几何中心, 设泡内为饱和SF6气体[26], 膜壳为磷脂分子层, 磷脂分子数对微泡表面的黏性项和表面张力项的影响分别用比例常数ηs0和Г0表示, 泡外磁流体不可压缩. 图 1 管内包膜微泡在磁声混合场作用下的几何模型 Figure1. Geometric model of the microbubble in a tube under magneto-acoustic mixing field.
下面考察驱动声压幅值a的影响. 令ω = 10并保持不变, 当a从2减至1及0.5时, 磁场的影响分别见图7(a)—(c)和图7(d)—(f). 没有外磁场(图7(a))时微泡振幅随驱动压幅值增大而增强, 微泡振荡强烈程度取决于驱动压. 将图7(a)与图7(b)和图7(c)对比, 当有外磁场存在且磁场逐渐增强即Remag从1减小为0.5时, 驱动压幅值对微泡振荡的影响随着磁场的增强逐渐减弱; 且a值越大即振荡越强烈的微泡对磁场响应越强烈. 驱动声压a一定(图7(d)—(f))时, 微泡振荡的平衡半径随磁场增强而增大; 且高强度磁场会增强微泡瞬态响应的非线性, 而在弱磁场中微泡的稳态响应振幅较大. 可见, 磁场会增强微泡瞬态响应的非线性而减小稳态响应微泡的振幅, 从而阻止微泡崩溃. 图 7 声压幅值不同时振荡微泡的磁响应R*-t*图 (We = 10, χm = 1) (a)—(c) 磁雷诺数Remag分别为$ {\infty } $, 1和0.5; (d)—(f)声压幅值a分别为2, 1和0.5 Figure7. Magnetic response of the oscillating microbubble with different acoustic pressure amplitudes (We = 10, χm = 1): (a)?(c) magnetic Reynolds number Remag is $ {\infty } $, 1 and 0.5, respectively; (d)?(f) acoustic pressure a is 2, 1 and 0.5, respectively.
通过以上分析可知, 磁场使管内微泡振动更趋稳定并抑制其塌缩. 磁场对微泡行为的影响不仅与磁场强度有关, 还与磁流体的磁化率、泡的振荡状态等有关. 图8为在无限大磁流体但无磁场(no tube and no magnetic field)、无限大磁流体且有磁场(no tube and magnetic)及管内磁流体且有磁场(tube and magnetic field)三种不同环境下微泡的振荡特性. 对比发现, 管内包膜泡在磁场作用下的瞬态响应最为强烈即振幅最大, 相比于无界环境管的存在会降低微泡稳态响应的振幅, 而且在确定的强磁场中, 管的存在对微泡瞬态响应有扰动作用; 当包膜泡仅在声场作用下时, 微泡先收缩之后做小振幅的往复运动, 而在磁-声复合场作用下微泡先膨胀且做平衡半径大于无磁场时的往复运动. 可见, 管约束会抑制微泡的振荡, 而磁场的存在会增大振荡微泡的平衡半径并使其振荡更趋稳定而避免塌缩. 图 8 不同环境条件下微泡的振动响应R*-t*图 (Remag = 0.5) Figure8. Vibration response of the microbubble under different environmental conditions (Remag = 0.5)