Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 12004424, 11847012)
Received Date:11 March 2021
Accepted Date:04 May 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:Water is one of the most common molecules in space and is also most valuable substance resource for living activities on earth. Studying water clusters plays an important role in actually utilizing water resources. Meanwhile, water clusters can be used as an ideal water microscopic model, which can expand the development of physical and chemical basic science, for example, it can provide the reference for investigating the size-dependent dissociation properties and interactions between solvents and solutes. On the other hand, the gas-phase mixed acidic water clusters have aroused great interest in recent years. For instance, One has been seeking for the smallest energy structure of pure water clusters and doped acidic molecular water clusters, experimentally and theoretically. In short, doping with foreign molecules or atoms can significantly enlarge the scope of scientific research on water clusters. Currently, there are many approaches to doping water clusters experimentally. This review briefly summarizes these means and compares the characteristics of various doping methods to help researchers to apply water cluster doping experiments more effectively. Keywords:water cluster/ mixed cluster/ doping methods
全文HTML
--> --> --> -->
2.1.共膨胀方法
为了更好地阐述该节内容, 本文以美国南加州大学Kresin组的水团簇源腔[27,46]为例, 如图1(a)所示. 水团簇源腔装置包括了水装载系统、水团簇源、校准器、液氮阱、扩散泵、X-Y平台等, 其中水装载系统包含可拆卸的广口瓶、水阀、$1/16''$不锈钢管. 为了获得纯水团簇, 可以仅装载纯水, 然后打开阀门, 通过源腔内外的压强差, 使得纯水装载到水团簇源里. 随后可通过比例-积分-微分(proportional-integral-derivative, PID)控制器将水团簇源的主体及其喷嘴(nozzle, 75 μm)的温度分别保持在408 K和448 K, 该温度可维持源内的蒸汽压在3—4个大气压, 保持喷嘴具有更高的温度从而避免其自身阻塞. 因此, 水蒸气可通过喷嘴超声绝热膨胀而冷凝为超音速纯水团簇束流, 形成的束流会飞行经过校准器(skimmer)和准直仪(collimator)以确保其方向性. 通常根据不同实验的需要, 可加入不同的装置来研究水团簇的相关性质, 如利用斩波器(chopper)及多通道定标器(multi-channel scaler, MCS)来测量水团簇的速度、或加入高压偏转器(high voltage deflector)以测量水团簇的有效极化率(effective polarizability)、还可加入红外光谱确定水团簇的氢键网络结构, 如具体可探测氢键合的${\rm{O}}{{\rm{H}}^ \bullet }$的红外振动吸收光谱来确定, 这些测量手段同样可应用于研究混合水团簇的性质. 下一步纯水团簇将被电离器(ionizer)通过70 eV和20 mA的电子轰击进行电离, 再通过四极杆质量选择器(quadrupole mass analyzer, QMA)从0—300 amu (1 amu = 1.66 × 10–24 g)进行选择, 而具体的质量选择取决于该QMA的模拟直流电压(0—10 V), 其由EG&G 5209 (+/–15.00 V, 1 mV分辨率)锁相放大器提供. 最终被电离的纯水团簇离子可由脉冲计数电子倍增管(DeTech Inc. Model 311)和单阈值鉴别器(ARI FT-100D)所探测. 由鉴别器形成的晶体管-晶体管逻辑电路电平脉冲输入噪声隔离器(NVE, IL710GMR), 最终的信号可被同步检测器、MCS及其配套软件(MCS-32)所记录. 图 1 (a) 水团簇源装置图, 其中标红的3个部分构成了共膨胀掺杂水团簇的基本条件, 即包括可盛入纯水或混合液体的广口瓶、装载管、水团簇源; (b) 实验将甲醇和纯水以约1∶5的体积比混合, 经过超声膨胀, 获得的水-甲醇混合团簇质谱, 尽管甲醇相比于水含量较小, 但是从图上可看出水-甲醇混合团簇的信号却远强于纯水团簇的信号(红色箭头标记处为纯水团簇峰); 插图(c)是75—125 amu质量范围内的质谱放大图[46], 其版权已获得Nature Springer的许可 Figure1. (a) Diagram of water cluster source chamber, in which the three parts marked in red constitute the basic conditions for co-expanding to attain doped water clusters, including a jar that can be filled with pure water or mixed liquid, a loading tube, and a water cluster source. (b) In the experiment, methanol and pure water were mixed in a volume ratio of about 1∶5, and after supersonic expansion, the mass spectrum of the water-methanol mixed cluster was obtained. The content of methanol was much less than water, but the signal of water-methanol mixed clusters is much stronger than that of pure water clusters (the red arrow indicates the pure water cluster peak); The inset (c) is an enlarged drawing of the mass spectrum in the mass range of 75–125 amu[46], which is reprinted by the permission of Nature Springer.
本节将描述另一种水团簇的掺杂方法[46], 即通过一根非常纤细的不锈钢管输运外来气体分子, 称之为毛细管掺杂方法, 如图3所示. 由于该种方法的应用相比于前两种, 相对少见, 因此将以仪器具体描述毛细管掺杂水团簇的方法, 以DCl分子为例: 将一根直径为1/16 inch (1 inch = 2.54 cm)的不锈钢管(类似于毛细管)将其出口挤压成椭圆形状(半长轴ID约2 mm), 并位于喷嘴前方5 mm处, 毛细管的方向垂直向下并指向水团簇束流飞行方向, 如图3(a)所示. 外来分子DCl会扩散流出毛细管, 流速可通过两级压力调节器进行控制, 如可利用美国Swagelok公司的双针阀进行精细调节. 阀门的精确调节能够获得混合簇的最大强度, 通常情况下, 如果水团簇束流信号强度因DCl分子的碰撞而斩波一半时, 则混合团簇的信号最强. 图3(b)是通过毛细管输送DCl分子, 使其与水团簇束流碰撞后所探测到的质谱, 对应的峰有纯水团簇((H2O)4H+, (H2O)5H+, (H2O)6H+, (H2O)7H+)以及与DCl混合的水团簇(H2O)4D+, (H2O)5D+, (H2O)6D+, (H2O)7D+). 相比于共膨胀方法, 混合团簇的信号强度也比较弱, 并且当应用于其他外来极性分子时, 如CH3OH, NH3等, 获得的质谱并没有像图1(b)那样发现混合团簇信号, 如图3(c)和图3(d)所示. 可以看出和DCl极易被水团簇拾取相比, 这些分子似乎很难利用毛细管掺杂方法被水团簇拾取, 背后的物理化学机制仍待进一步研究. 图 3 (a)是毛细管掺杂装置图; 基于毛细管方法, (b)为获得的DCl与水团簇的混合质谱; (c)和(d)分别为CH3OH和NH3掺杂后水团簇的质谱, 这两种分子气体似乎很难应用毛细管方法掺杂进水团簇中. 其中图(b)和(c)引自参考文献[46], 其版权已获得Nature Springer的许可 Figure3. (a) Design diagram of the capillary with the water cluster source. Based on the capillary method, panel (b) is the obtained mixed mass spectrum of DC1 and water clusters; panel (c) and (d) are the mass spectra of water clusters after doped with CH3OH and NH3, respectively. These two molecular gases seem hardly doping into water clusters by the capillary methods. Panels (b) and (c) are cited from Ref. [46], which are reprinted here by the permission of Nature Springer.