Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 12172129, 11302076), the Natural Science Foundation of Hebei Province, China (Grant No. A2014502047), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2021MS081)
Received Date:01 March 2021
Accepted Date:05 April 2021
Available Online:07 June 2021
Published Online:20 September 2021
Abstract:By the large eddy simulation method, the turbulent Taylor-Couette flow of conducting fluid under a homogenous transverse magnetic field is investigated through using the computational fluid dynamic software ANSYS Fluent 17.0. The flow is confined between two infinitely long cylinders, thus a periodic boundary condition is imposed in the axial direction. The inner cylinder rotates while the outer one is at rest, and their radius ratio is 1/2. Two Reynolds numbers of 3000 and 5000 are considered in the simulations, and the Hartmann number is varied from 0 to 50. In the present study, we assume a lower magnetic Reynolds number $Re_{\rm m} \ll 1$, i.e., the influence of the induced magnetic field on the flow is negligible in comparison with the imposed magnetic field. The evolution of Taylor vortices, velocity profile of mean flow, and turbulent kinetic energy distribution under the transverse magnetic field are analyzed and compared with the results of the axial magnetic field counterpart. It shows that the imposed magnetic field has a significant damping effect on the Taylor-Couette flow. The twisted Taylor vortices break into small-scale vortex structures under the transverse magnetic field and they arrange themselves along the magnetic field. The fluctuations which are perpendicular to the magnetic field are suppressed effectively, while the one which is parallel to the magnetic field is nearly uninfluenced, resulting in quasi-two-dimensional elongated structure in the flow field. As anticipated, in a sufficiently strong magnetic field, the turbulent Taylor-Couette flow may eventually decay to a Couette laminar flow. In the outer cylinder and the area perpendicular to the direction of the magnetic field, the suppression effect is even stronger than those in any other places and fewer vortices are observed in the simulations. The turbulent kinetic energy is transferred firstly from large eddies to intermediate eddies, then to small eddies, and finally dissipated due to the viscous and Joule effect. As the Reynolds number increases, the suppression effect of the magnetic field weakens, and the flow behaves divergently in different areas of the apparatus. Compared with the axial magnetic field, the transverse magnetic field has a weak suppression effect on the flow field, and the profiles of related variables are obviously anisotropic. Keywords:transverse magnetic field/ Taylor-Couette flow/ turbulence/ large eddy simulation
对Re = 3000工况, x = 0子午面和y = 0子午面平均速度矢量图进行分析, 结果如图6所示. 左侧为外圆筒壁面, 右侧为内圆筒壁面. Ha = 0时, 流场中存在3对泰勒涡. 随着磁场强度增加, 泰勒涡结构消失, 流场中出现小尺度涡结构. Ha = 50时, 涡结构在靠近外圆筒区域完全消失, 在靠近内圆筒区域少量存在, 说明在外圆筒区域, 磁场作用效果更强. 图 6Re = 3000工况下子午面平均速度矢量图 (a) x = 0; (b) y = 0 Figure6. Diagram of mean velocity in the meridian plane at Re = 3000: (a) x = 0; (b) y = 0.
对横向磁场作用下x = 0子午面和y = 0子午面速度矢量图进行对比分析, 发现 x = 0子午面和y = 0子午面速度矢量图在磁场作用下的变化过程不同, 磁场对x = 0子午面流场的抑制效果更强. 即在垂直磁场方向的区域, 磁场对流体的抑制作用更强. Re = 5000工况下x = 0子午面和y = 0子午面平均速度矢量图见图7, 未加载磁场时流场中存在3对泰勒涡, 与杜珩等[23]的结果一致, 进一步证明了计算结果的可靠性. 加载磁场后, 泰勒涡的演化过程与Re = 3000工况下的演化过程大致相同. 但相同磁场强度条件下, Re = 5000工况子午面存在更多的涡结构. 图 7Re = 5000工况下子午面平均速度矢量图 (a) x = 0; (b) y = 0 Figure7. Diagram of mean velocity in the meridian plane at Re = 5000: (a) x = 0; (b) y = 0.
在横向磁场的作用下, 沿磁场方向和垂直于磁场方向的流场中, 泰勒涡和速度矢量的演化过程显现出不同特点. 为了进一步研究横向磁场作用下流场的运动规律, 下面对全流场平均周向速度、x = 0子午面和y = 0子午面周向速度进行分析. 图8为全流场平均周向速度分布曲线. 随着磁场强度增加, 平均周向速度逐渐减小. 对于Re = 3000工况, Ha = 30时, 平均周向速度在靠近外圆筒区域出现0值. Ha = 50时, 平均周向速度为0的区域进一步扩大, 由外圆筒一直延伸到圆筒中间区域. 对于Re = 5000工况, Ha = 0—30时, 平均周向速度曲线在0刻度线以上. Ha = 50时, 靠近外圆筒区域出现0值. 图 8 全流场周向速度分布曲线 (a) Re = 3000; (b) Re = 5000 Figure8. Distribution of the azimuthal velocity in the whole flow field: (a) Re = 3000; (b) Re = 5000.
图10为y = 0子午面周向速度分布曲线, 可以看出, 在Ha = 0—50范围内随着磁场强度增加, 流动被逐渐抑制, 但曲线始终位于0刻度线上方, 与x = 0子午面周向速度曲线明显不同. x = 0和y = 0子午面周向速度曲线在横向磁场作用下的差异, 更加直观地反映了沿着磁场方向和垂直于磁场方向不同区域流体运动的区别. 图 10y = 0子午面周向速度分布曲线 (a) Re = 3000; (b) Re = 5000 Figure10. Distribution of the azimuthal velocity in the vertical plane of y = 0: (a) Re = 3000; (b) Re = 5000.
33.1.4.湍动能分布 -->
3.1.4.湍动能分布
图11为横向磁场作用下湍动能分布图, 其中湍动能取值k = 1.01 m2/s2. 当Ha = 0和Ha = 10时, 湍动能的分布较为规则, 可以反映出泰勒涡的存在. Ha = 30时, 完整的泰勒涡结构消失, 流场内充满小尺度涡结构. 此时, 流场中湍动能的分布较为均匀. 对于Re = 3000工况, Ha = 50时, 垂直于磁场方向湍动能分布出现空白区域, 且空白区域随着磁场强度增加而变大. 对于Re = 5000工况, Ha = 50时, 垂直于磁场方向湍动能分布开始出现空白区域. 这一变化过程与泰勒涡的演化过程一致, 由此可知, 湍动能分布的变化过程可以反映出泰勒涡的演化过程. 图 11k = 1.01 m2/s2时湍动能分布图 (a) Re = 3000; (b) Re = 5000 Figure11. Distribution of turbulent kinetic energy with k = 1.01 m2/s2: (a) Re = 3000; (b) Re = 5000.
图12为Re = 3000工况下, Ha = 0和Ha = 30时的湍动能谱, 在流场中设置3个点, 分别位于内、外筒壁面和内外圆筒中间位置, 坐标为 (0, 0.5165, 0.785), (0, 0.75, 0.785), (0, 0.9835, 0.785), 记录一段时间内的周向速度变化, 经由快速傅里叶变换获得湍动能与频率的关系. 由图12可知: Ha = 0时, 在低频下3个点的能谱相差较小, 说明大尺度漩涡(泰勒涡)充满整个间隙; 高频下, 离内壁最近的点的能谱高于其余两点, 说明湍流脉动强烈, 这里是漩涡产生的区域. Ha = 30时, 三条线分离, 意味着在磁场作用下3个点附近的漩涡结构尺度不一样, 和图6平均速度矢量图变化一致. 图 12Re = 3000工况下湍动能谱 (a) Ha = 0; (b) Ha = 30 Figure12. Power energy spectra for uθ at Re = 3000: (a) Ha = 0; (b) Ha = 30.
图13为Re = 3000工况下, 泰勒涡在轴向磁场作用下的演化过程图, Q = 2000. 随着磁场强度增加, 泰勒涡尺寸变小, 并逐渐向内圆筒靠近. Ha = 30时, 完整的泰勒涡结构消失. Ha = 50时, 流场中仅有少量涡结构. 与图5(a)进行对比分析, 发现横向磁场作用下流场结构呈现出各向异性, 磁场抑制垂直于场强方向的流动, 而对平行方向的流动基本没有作用. 轴向磁场作用下流场仍具有轴对称性, 泰勒涡与轴向磁场垂直, 因而沿圆周方向, 物理变量(统计平均值)分布一致. 且轴向磁场对泰勒涡的抑制作用更强. 图 13Re = 3000工况下泰勒涡在轴向磁场作用下的演化过程图(Q = 2000) Figure13. Diagram of Taylor vortex evolution process under the action of axial magnetic field at Re = 3000, Q = 2000.