1.School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China 2.Beijing Key Laboratory of passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11805066) and the Nuclear Power Technology Innovation Centre (Grant No. HDLCXZX-2020-HD-018)
Received Date:07 May 2020
Accepted Date:04 June 2020
Available Online:13 June 2020
Published Online:05 October 2020
Abstract:Compared with traditional X-ray imaging systems based on polycapillary X-ray optics or a pinhole, coded aperture imaging system has the advantages in simple structure, high sensitivity, and strong expandability, which make it possess the potential applications in X-ray fluorescence imaging. In this work, a new coded aperture X-ray imaging system based on a novel imaging model which decomposes the mask projections into a superposition of two separable functions is designed and proposed for high-resolution X-ray imaging. The performance of the system is demonstrated by using the Geant4 package. To reduce the computational complexity of calibration and image reconstruction, a separable mask with 90 × 90 pixels is used. The mask is designed by selecting the central part of the original rank 463 modified uniformly redundant arrays. The mask is made of platinum foil with a pixel pitch of 25 microns. To study the effect of mask thickness on system performance, the mask thickness is varied from 25 to 200 microns. The active area of the Si detector employed in the system is 2 mm × 2 mm, divided into 80 × 80 pixels, each with a size of 25 μm × 25 μm. The field of view of the system is equal to the area of the detector, which is 2 mm × 2 mm. The detector is parallel to and center-aligned with the mask with a fixed distance of 2.0 mm. The images are reconstructed by using the fast iterative shrinkage-thresholding algorithm. The high-quality reconstructed images of different energy line sources and complex shaped objects are obtained. The simulation and analysis results indicate that for the near-field imaging, unlike imaging systems based on the conventional convolution model, the system has the performance that is not affected by the aperture collimation effect. The spatial resolution of the imaging system is about 65 microns. The calibrated matrices used have an important influence on the image quality. The quality of the reconstructed image is affected by the energy of X-rays used during calibration and the energy of X-rays emitted from the object; the smaller the difference between these two energy values, the higher the quality of the reconstructed images will be. The three-dimensional reconstruction results show that the system can correctly estimate the distance between the object and the system from a single two-dimensional projection. The axial spatial resolution of the system is about 1.1 mm. Keywords:coded aperture/ X-ray fluorescence imaging/ Monte Carlo simulation/ image reconstruction
采用传统的卷积成像模型进行近场成像时, 由于编码准直器厚度引起的准直效应会使重建图像质量严重下降[14]. 因此, 本节研究采用T2S模型时, 准直器厚度对重建图像的影响. 将X射线能量设置为10 keV, 编码准直器的厚度设置为25、50、100和200 μm等4个厚度. 图3(a)所示为0.4 mm线源的重建图像, 由于系统的空间分辨率有限, 重建图像在横纵向均有一定程度的模糊. 虽然线源沿横向均匀分布, 但其重建图像沿横向并不是均匀分布, 且与准直器厚度无关(图3b). 准直器的厚度从25 μm增加到200 μm, 系统沿纵向的分辨率并无明显变化(图3c). 通过进一步模拟点源(10 keV)成像, 计算得到准直器的厚度为25、50、100和200 μm时, 系统的空间分辨率(半高全宽, FWHM)分别为66.5、65.8、64.9和64.2 μm. 可以看出, 随着准直器厚度的增加, 空间分辨率缓慢减小. 作为对比, Haboub等人基于20 μm准直器研制的成像系统的空间分辨率约为72 μm[13]. 因此, 相比于传统的卷积模型, 采用T2 S模型时分辨率略优. 图 3 线源二维重建图像及其沿横纵向分布 (a)准直器厚度25微米时的线源重建图像; (b)不同准直器厚度时的横向分布; (c)不同准直器厚度时的纵向分布 Figure3. 2 d reconstructed image of the line source and its horizontal and vertical distribution: (a) Reconstructed image of the line source when the mask thickness was 25 micron; (b) horizontal distribution for different mask thickness; (c) vertical distribution for different mask thickness.
对于形状复杂的成像物体, 采用T2S模型时, 重建图像比较准确地还原了物体的原始分布情况(图4b). 而采用传统的卷积模型近场成像时, 重建图像通常存在较强的伪影[13,14]. 当准直器厚度从25 μm增加到200 μm, 重建图像无明显变化. 在后两节的模拟中, 准直器的厚度设置为固定值25 μm. 图 4 物体的原始图像及重建图像 (a)原始图像; (b)准直器厚度25微米时的重建图像 Figure4. Original image and reconstructed image of the object: (a) Original image; (b) reconstructed image when the mask thickness was 25 micron.
24.2.X射线能量的影响 -->
4.2.X射线能量的影响
X射线的能量越高, 穿透能力越强, 散射也越严重; 物体发射的X射线能量不同时, 产生的投影图像不同. 同样, 校准时采用的X射线能量不同, 计算得到的传递矩阵也不同. 因此, 本节研究物体发射的X射线能量和校准时采用的X射线能量对成像结果的影响. 如图5所示, 当校准能量为10 keV时, 物体发射的X射线能量为6和8 keV对应的重建图像质量较好; 而当物体能量增大为16 keV时, 重建图像的质量明显变差. 如图6所示, 当校准能量为16 keV时, 物体能量为16 keV对应的重建图像的质量较好, 而物体能量为6和8 keV时, 重建图像均有一定程度的畸变. 图7展示了形状为“180”的物体的重建图像质量的定量评价结果随物体能量和校准能量的变化情况. 可以看出, 物体能量不同时, 不同校准能量对应的重建图像的质量所能达到的最佳值相近, 且均出现在校准能量和物体能量相同时; 校准能量和物体能量不同时, 重建图像的质量均有不同程度的变差. 整体而言, 校准能量为10 keV时, 重建图像质量受物体能量变化的影响最小. 图 5 校准能量10 keV情况下物体不同能量时的重建图像 (a) 6 keV; (b) 8 keV; (c) 16 keV Figure5. Reconstructed images of the object with different energies at a calibration energy of 10 keV: (a) 6 keV; (b) 8 keV; (c) 16 keV.
图 6 校准能量16 keV情况下物体不同能量时的重建图像 (a) 6 keV; (b) 8 keV; (c) 16 keV Figure6. Reconstructed images of the object with different energies at a calibration energy of 16 keV: (a) 6 keV; (b) 8 keV; (c) 16 keV.
图 7 重建图像质量的定量评价结果随物体能量和校准能量的变化情况 (a) RMSE; (b) UQI Figure7. Quantitative evaluation results of reconstructed images change with the object energy and calibration energy: (a) RMSE; (b) UQI