1.Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100094, China 2.Beijing Excimer Laser Technology and Engineering Center, Beijing 100094, China 3.University of Chinese Academy of Sciences, Beijing 100049, China 4.State Key Laboratory of Applied Optics, Changchun 130033, China
Fund Project:Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02202) and the Grant from the State Key Laboratory of Applied Optics, China (Grant No. SKLAO-201915)
Received Date:13 January 2020
Accepted Date:13 April 2020
Available Online:27 August 2020
Published Online:05 September 2020
Abstract:Excimer laser is the current mainstream source of international semiconductor lithography. The stable operation of the laser system directly affects the working efficiency of the semiconductor lithography machine, so it is very important to optimize the laser system. The buffer gas commonly used in ArF excimer laser systems is He, Ne. In the early years, Shinjin Nagai and Mieko Ohwa have studied the output characteristics of the system when using He or Ne as a buffer gas from the aspect of pump efficiency and gain coefficient, and pointed out that using Ne instead of He has no obvious advantages in terms of efficiency. However, when Ne is used as the buffer gas, the reaction between Ne and electrons is more complicated. In addition to direct ionization and excitation reactions, it also contains a large amount of step ionization and secondary ionization, which releases free electrons. The stability of the system is improved, when Ne is used as the buffer gas. The ArF excimer laser system discharge characteristics in different buffer gases are analyzed based on fluid model in the paper. The role of photoionization is discussed. The simulation results show that the width of the electron depletion layer and the cathode sheath are both smaller, and the discharge stability is higher when Ne is used as the buffer gas. The expansion of the discharge region is accelerated and the threshold voltage of the discharge is reduced by adding Xe into Ne to trigger photoionization. The excimer laser discharge process is very complicated and is affected by many factors. Only two factors of the buffer gas and the photoionization process are studied in this paper. The simulation model will be extended from one-dimensional case to two-dimensional case in the future, and multiple physical factors of the ArF excimer laser system will be considered. Keywords:ArF excimer laser/ fluid model/ electron density/ photoionization
全文HTML
--> --> -->
2.理论模型光刻用ArF准分子激光系统常规工作气压约为2—5 bar (1 bar = 105 Pa), 通过高压放电激励, 建立等离子体运转模式, 最终实现了深紫外波段(中心波长为193 nm)的激光辐射. 本文采用适用于高气压气体放电系统的流体模型进行计算[12,13]. 流体模型将放电等离子体系统中的粒子作为流体来处理, 既考虑了场的自洽问题, 又考虑了带电粒子的非平衡问题, 能够反映出等离子体的主要宏观性质. 图1为一维流体模型计算流程. 图 1 准分子动力学仿真计算流程 Figure1. Simulation process of discharge dynamics of excimer.
He作为缓冲气体时, 光电离的主要反应物为193 nm光子及激发态粒子. 反应物均在工作气体击穿放电之后大量生成, 因此, 基于193 nm光子的光电离无法对放电初始阶段产生影响. 图7为距阴极0.2 cm处的电子数密度变化情况, 是在光电离存在的情况下, 当电子数密度下降速率变小, 光脉冲输出结束时, 电子数密度高于无光电离的情况. 光脉冲输出后期, 较高的电子密度有助于维持放电稳定, 提高激光脉冲宽度. 图 7 距离阴极0.2 cm处, 电子数密度随时间分布 (a) 不考虑光电离; (b)考虑光电离 Figure7. Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.
Ne作为缓冲气体时, Ne与电子反应生成的Ne*能够迅速与电子继续反应, 生成Ne2*, Ne2*可辐射出85 nm紫外激光, 单光子能量为14.6 eV. 在工作气体中加入微量的电离能较低的惰性杂质气体, 如Xe (电离能为12.1 eV)会被85 nm光子电离, 生成Xe+和自由电子, 即$ {\rm Xe} + h\nu \!\Rightarrow\! \rm Xe^+ + e. $ Xe被光子电离, 使工作气体中自由电子数增加, 而这一过程可以在放电初始阶段发生. 85 nm紫外激光可以接近于透明地穿过等离子体和气体, 于是光子分布的扩展速度会远远高于电子扩展速度, 并在更远的距离上导致光电离, 从而导致放电区域更快速度地扩散和混合; 同样, 光子可以进入通常电子无法到达的区域, 并在这些区域通过光电离导致种子电子生成. 这样, 光电离过程的引入, 会加快放电区域的扩展, 降低放电发生的阈值电压. 添加Xe后, 极板间放电电压、电流及光子数密度变化情况如图8所示. 从图8可以看出, 与未添加Xe相比, 添加惰性气体杂质后放电时间提前了20 ns, 放电时极板间电压从2.6 kV下降到2.2 kV, 放电电流从4.5 kA上升到9 kA, 光子数密度峰值从3.3 × 1020 m–3提高到7 × 1020 m–3. 由此可见, 在工作气体中添加惰性气体杂质有助于放电稳定, 能极大提升激光输出效率. 图9为添加Xe后, 电流密度最大时电子数密度的空间分布情况. 添加Xe后, 阴极附近的电子耗尽层及鞘层宽度进一步减小, 耗尽层宽度为5 μm, 鞘层宽度为10 μm. 电子耗尽层宽度的减小使放电稳定性得到进一步提升. 图 8 添加Xe与不添加Xe极板间电流、电压及光子数密度变化图 Figure8. Waveforms of discharge voltage, current, and photon number density with and without Xe.
图 9 添加Xe后电子数密度空间分布 Figure9. Waveforms of electron number density spatial distribution with Xe.
逐步增加杂质气体Xe的含量, 光子数密度变化情况如图10所示. 在一定范围内, 光子数密度随Xe含量的增加而增加, 放电时间逐步提前, 但当Xe含量达到8 × 10–6时, 光子数密度不再增加, 达到饱和状态. 图 10 不同Xe含量光子数密度分布情况 Figure10. Waveforms of photon number density with different Xe ratios.