Abstract:The topological transitions in two-dimensional photonic crystals (PCs) originate from the opening-closing-reopening of the bandgap, accompanied with the band order inversion. The topological bandgap in magnetic PC can be created by applying a bias magnetic field or deforming the geometry structure of the PC. In this paper, we demonstrate that the direction of the bias magnetic field also plays a key role in modifying the band structure in a two-dimensional magnetic PC. The results show that by reversing the direction of the bias magnetic field, the eigenstates with the same parity may exchange their orders in the band structure. We investigate this type of band order exchange in the applications of constructing topological edge states and its influence on the properties of edge states. We find, for example, reversing the direction of the bias magnetic field can create two almost degenerated topological edge modes, which propagate in the same direction but have opposite orbital angular momenta. The edge modes and their characteristics can be determined by the schematics of the band orders for the photonic crystals on the two sides of the boundary. The relative relationship of the band orders determines the emergence of the topological edge states, the number of edge states, and edge modes’ properties such as the orbital angular momentum and group velocity. Also, it affects the transmission efficiency of the electromagnetic wave on the boundary. The direction effect of the bias magnetic field on band order exchange presented in this paper provides us with a new way to change the feature of topological edge states and helps us to better understand the influence of band order on topological phases of photonic crystals. It may have potential applications, such as in pseudo-spin splitter and reflection-free one-way optical switch. Keywords:magnetic photonic crystal/ direction of bias magnetic field/ topological band structure/ edge state
全文HTML
--> --> -->
2.偏置磁场方向对能带带序的影响考虑如图1(a)所示的二维磁性光子晶体结构, 基元是由六根铁氧体柱(YIG)组成的六角集群, 其中铁氧体柱的半径r = 2 mm, R为铁氧体柱到基元中心的距离. 基元以六角晶格的形式排列, 晶格常数$a = 10\sqrt 3$ mm. 图1(a)中的虚线框显示了光子晶体的原胞单元. YIG的电磁参数如下: 相对介电常数${\varepsilon _{\rm{r}}} = 15.26$, 饱和磁化强度${M_{\rm{s}}} = 1884{\rm{G}}$ (1 G = 10–4 T), 磁损耗系数$\alpha = 0.007$[9,11]. 当偏置磁场H0沿着z轴并且处于饱和磁化时, 铁氧体材料具有张量形式的磁导率[25]: 图 1 (a)二维光子晶体示意图, 其中黄色的圆表示空气背景中的铁氧体柱, 黑色六边形表示阵列结果中的一个基元; (b) H = 0和R = a/3时的能带结构, 在Γ点具有一个四重简并点; (c) H ≠ 0和R = a/3时的能带结构(由于打破时间反演对称性, 能带结构中出现了完全带隙, 并在Γ点出现了两个双重简并点); (d) H ≠ 0和R ≠ a/3时的能带结构 Figure1. (a) Schematic of two-dimensional magnetic photonic crystal fabricated by ferrite rods (denoted by yellow circles) embedded in air background. The black hexagon denotes the basis of the array. (b) Band structure at H = 0 and R = a/3. A four-fold degeneracy point shows at the Γ point. (c) Band structure at H ≠ 0 and R = a/3. A full bandgap presents in the band structure because of time reverse symmetry broken, and two doubly degeneracy points present at Γ point. (d) Band structure at H ≠ 0 and R ≠ a/3.
(3)式表明电场的相位会随着磁场旋转方向的改变相应地发生变化, 表现为相位随时间的变化为右旋或左旋, 也就是改变了轨道角动量的方向. 图2给出了偏置磁场反向前后本征态的磁场矢量和电场相位的变化, 可以看到偏置磁场反向后$ \varGamma $点处相应本征态的本征频率未发生变化, 但是其轨道角动量与反向前刚好相反. 具体表现为: 逆时针的p+(d+)电场分布变为顺时针的p-(d-), 而顺时针的p-(d-)电场分布则变为逆时针的p+(d+). 这表明本征态的正负符号发生交换, 从而能带带序也发生了交换. 图3给出了在正反磁场两种情形下p态和d态次序是如何随着R发生改变的. 图3(a)给出了位于$ \varGamma $点的p态和d态的本征频率随参数a/R的变化, 在计算过程中始终保持偏置磁场为H0 = 800 Oe $\Big(1\;{\rm{Oe}} = \dfrac{1}{{4{\text{π}} \times {\rm{1}}{{\rm{0}}^{ - 3}}}}\;{\rm{A/m}}\Big)$. 当改变R值时, 带隙经历了闭合和重新打开, 这暗示着时间反演对称性和赝时间反演对称性之间的竞争使得磁性光子晶体发生了从量子自旋霍尔相到量子霍尔相, 再到光学绝缘相的转变. 不同光子相的典型能带结构如图3(b)—(d)所示, 图中还内嵌了$ \varGamma $点处相应本征态的场结构. 这些图片清楚地显示了本征态在带隙两侧的交换, 从而导致了磁性光子晶体不同的拓扑相变. 图 3 (a)当偏置磁场沿着+z方向时, Г点的p态和d态的本征频率随参数a/R的变化(随着a/R的增加, Г点处发生能带带序反转, 并伴随着拓扑相变; 不同颜色的阴影显示三种不同的拓扑相); (b)?(d)分别是当光子晶体处于量子自旋霍尔相(R = a/2.684)、量子霍尔相(R = a/3)和光学绝缘相(R = a/3.5)时的能带结构; 图中的插图是能带结构对应点上的场模式图, 其中黑色箭头表示坡印亭矢量; (e)?(h)是当偏置磁场沿着–z方向时, 本征频率随a/R的变化, 以及三种典型的拓扑相的能带结构和场模式 Figure3. (a) Evolution of p and d eigenstates at point Г as a function of the radio of a/R with the bias magnetic field in the +z direction. As a/R increases, the band order exchange takes place where phase transition happens. Three types of phases are shaded in different colors. (b)?(d) Typical band structures of quantum spin-Hall (QSH) phase (R = a/2.684), quantum Hall (QH) phases (R = a/3), and conventional insulator (CI) phase (R = a/3.5). (e)?(h) The same as (a)?(d), but the bias magnetic field is in the –z direction. The insets of the panels (b)?(d) and (f)?(g) are the profile of eigenstates at the corresponding dots on the band structure of the panels, where the black arrow indicates the Poynting vectors.
3.利用偏置磁场方向构建不同类型的拓扑边界态光子拓扑绝缘体最主要的特征是出现拓扑保护的边界态. 根据“体边”对应理论[27], 当两个具有不同拓扑指数的结构组合在一起时, 它们的边界上必然存在拓扑保护的边界态. 假设磁性光子晶体被分成如图1所示的左右两个区域, 它们分别被命名为域I和域II. 通过独立地调整两个区域各自的参量R使它们处于不同的拓扑相, 那么在区域边界上将出现拓扑保护的边界态. 边界态的特性不仅取决于域所处的拓扑相, 还取决于边界两侧拓扑相能带的相对关系. 考虑两个区域都处于量子霍尔相, 但它们的参量R分别是a/2.93和a/3.09, 并且偏置磁场方向相同. 此时, 两个区域的共同带隙两侧虽然有不同的能带带序(见图3(a)), 但是在域边界上并没有出现边界态(见图4(a)). 如果改变域I中偏置磁场方向, 其能带带序将从$[{d_ - }, {p_ + }, {d_ + }, {p_ - }]$转变为$[{d_ + }, {p_ - }, {d_ - }, {p_ + }]$, 边界态将会出现在两个域的共同带隙中. 图3(d)给出了此时的投影能带结构, 可以看到带隙中出现了两条边界, 并且它们几乎是简并的. 由于两个边界态之间的耦合作用, 边界态中会出现一个微小的间隙. 需要指出的是这两条边界态对应的电磁模式具有不同的轨道角动量. 作为证明, 模拟了边界态在8 GHz时电磁波的传输特性. 图4(e)和图4(f)给出了TE极化电磁波沿着边界传播时的场分布图, 图中S+和S–分别表示轨道角动量为正和负的激发源, 它们是由具有${{\text{π}} / 2}$相位差的面内磁场${S_ \pm } = {H_0}({e_x} \mp {\rm{j}}{\kern 1 pt} {e_y})$激发. 结果显示具有正和负轨道角动量的激励源都激发起了沿同一方向传播的单向波. 这一现象在以往边界态的研究中尚未涉及到. 作为对比, 图4(b)和图4(c)给出了在同向磁场下的模拟结果, 可以看到不同轨道角动量的激发源在域边界上都不能激发起边界模式的波. 以上结果表明, 我们能够通过改变区域的偏置磁场方向来调控边界态, 从而实现对光信息的控制. 图 4 偏置磁场方向对边界态的影响(区域I和II均处于量子霍尔相, 但结构参量R分别是a/2.93和a/3.09) (a)两个区域施加同向偏置磁场时的投影能带结构; (b)和(c)分别用激发源S+和S–激发时的场分布; (d)两个区域施加反向偏置磁场时的投影能带结构; (e)和(f)分别用激发源S+和S–激发时的场分布, 其中的放大图展示了电磁波的轨道角动量特性, 图中箭头表示坡印亭矢量(当两个区域施加反向偏置磁场时, S+和S–都可以激发沿同一方向传播的单向波); (a)和(d)图中的插图给出了两个区域中能带结构的对应关系, 两块域中相同的本征态连线连的交叉点出现在共同带隙中时将出现拓扑边界态 Figure4. Influence of the direction of bias magnetic field on the edge states when two domains are in the QH phase but have different geometric structure (R = a/2.93 and R = a/3.09). (a) The projected band structure when two domains are applied by the same direction of bias magnetic field. (b) and (c) Electrical field distribution at 8 GHz excited by S+ and S–, respectively. No edge mode is excited. (d) The projected band structure when two domains are applied by the opposite direction of bias magnetic field. (e) and (f) Electric field distribution corresponding to (d) at 8 GHz excited by S+ and S–. The waves propagate unidirectional. The inset enlarges the field details which shows the orbital angular momentum of the wave. The inserts of (a) and (d) show the schematic of the relationship of the topological edge state and eigenstates in the two domains.
表1由本征态连接方式决定边界态的轨道角动量和群速度 Table1.Orbital angular momentums and group velocities determined by the linked manner of eigenstates.
图 5 (a)由两个具有不同拓扑指数的域组合在一起形成的域边界(假设保持域II固定在量子自旋霍尔相); (b)?(d)域I从量子自旋霍尔相转变到量子霍尔相时, 域边界出现拓扑边界态的过程示意图 Figure5. (a) Schematics of the domain boundary created by two domains with distinct topological index. Supposing the domain II keeps in QSH phase. (b)?(d) The procedure of the topological edge state creation when domain I takes place the phase transiting from QSH phase to QH phase.
对于更加一般的情况, 如两个区域分别处于量子自旋霍尔相(R = a/2.684)和光学绝缘相(R = a/3.50), 并施加方向相同的偏置磁场. 图6(a)中的插图给出了此时的能带相对关系示意图. 两个交叉点分别由正的轨道角动量(d+, p+)的模式和负的轨道角动量(d–, p–)的模式连接构成, 所以在边界上存在着两条轨道角动量相反的边界态. 这个结论和图6(a)中的投影能带是一致的. 不同于图4(d), 此处的两条边界态具有相反的群速度和轨道角动量[12-16], 这将会产生与量子自旋霍尔效应相似的赝自旋单向波. 当域II中的偏置磁场反向时, 无论交叉点的个数还是本征态的连接方式都没有改变(见图6(b)插图), 所以边界态的轨道角动量和群速度保持不变. 作为进一步的证明, 图6(c)和图6(d)分别展示了在边界上用正和负的轨道角动量的源激发的电场分布情况, 结果显示不同角动量波将会沿不同的方向传播. 而用线电流源S激发时, 具有正和负的轨道角动量的电磁波会被分开, 然后分别沿着不同的边界传播, 如图6(e)所示. 对其他用不同拓扑相以及磁场方向变化导致的带序变化构建的边界态的情况, 读者可仿照上述方法自行分析, 在此就不再一一赘述. 需要指出当域I和域II的磁化方向相同时, 共同带隙两侧光子晶体能带带序的组合是不完全的. 如果再引入磁场方向作为参量, 则可以实现所有可能的组合, 从而实现更多可能的拓扑边界态. 如何实现上述由磁场方向导致的拓扑态, 在实验上还存在着挑战. 一种可能的方法是采用永磁体来实现对偏置磁场方向的控制[28], 但是它可能会带来非均匀磁化的问题. 图 6 区域I和II分别处于量子自旋霍尔相和量子霍尔相时, 偏置磁场方向对边界态的影响 (a)同向偏置磁场和(b)正反向偏置磁场时的投影能带结构(两条边界态具有相反的群速度和轨道角动量, 在边界上形成与量子自旋霍尔效应相似的赝自旋单向波; 采用正反向偏置磁场可以有效地减小边界态的间隙); (c) S+激发源可以实现向左边传播的单向传播; (d) S–激发源可以实现向右边传播的单向传播; (e)当S被激发时, TE波沿着两个方向传播 Figure6. Influence of the direction of bias magnetic field on the edge states when two domains are the QSH phase and the CI phases, respectively. (a), (b) The projected band structure for the two domains are respectively applied by the same and the opposite direction of bias magnetic field. The edge states localized at the boundary lead to a pseudo-spin dependent one-way propagation. The application of using opposite direction of bias magnetic field in the two domain reduces the gap of edge states. (c) Unidirectional wave propagation localized at domain interface excited by S+. (d) Unidirectional wave propagation excited by S–. (e) TE wave propagates along with opposite side when it is excited by S.
值得注意的是, 改变边界两侧偏置磁场的方向会明显地改变边界态电磁波的传输特性. 计算了图7(a)所示光子晶体的传输效率. 传输效率T为磁性光子晶体下方的出射电磁波功率pout和光子晶体上方的入射功率pin之比, 采取对数刻度可表示为$T\; = 10 \lg({P_{{\rm{out}}}}/{P_{{\rm{in}}}})$. 图7(b)给出了在边界两侧施加不同方向的偏置磁场时的传输效率. 可以看到在左右两侧光子晶体的共同带隙频率范围内(灰色阴影区域), 由于存在边界态的缘故光子晶体的传输效率得到较大的提高. 图中红色和蓝色的曲线分别对应于图6(a)和图6(b)偏置状态下的效率. 对比传输效率可以发现: 当两个区域的偏置磁场相反时, 传输曲线的趋势保持不变, 但传输效率有了明显的提高. 这证明了边界两侧能带的相对关系不但影响到边界态的形成, 还会影响其传输效率. 图 7 (a)传输效率计算示意图; (b)与图6对应的传输效率(红线和蓝线相应于边界两侧同向和正反向偏置磁场时边界态的传输效率, 绿线和黑线是左侧光子晶体(R = a/2.684)和右侧光子晶体(R = a/3.5)单独存在时的传输效率, 阴影区为两侧光子晶体的共同带隙) Figure7. (a) Schematic of the computational transmission efficiency. (b) The transmission efficiency corresponding to the Fig. 6. The transmission efficiency of the edge state under the condition of applying bias magnetic field with the same (red curve) or opposite direction (blue curve) in the two domains. The transmission efficiency of the full photonic crystals of the left domain is shown in green curve and the right domain in black curve. The shadow region indicates the common band gaps.