Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
Abstract: The topologically protected edge states of elastic waves in phononic crystal plates have the outstanding characteristics in wave manipulation such as the strong suppression of back-scattering and defect immunity, which can be used for controlling vibration and noise, detecting the structural damage, conducting the material nondestructive test and other engineering practices, and therefore have received much attention. But for plate structures, the propagation of elastic waves is complicated due to the coexistence and coupling of different types of wave modes, resulting in a challenge in designing topologically protected states. In this paper, a simple phononic crystal plate with triangular holes is designed for elastic wave manipulation based on topologically protected edge states. The band structure characteristics of the unit cell are studied by varying the rotation angle θ of the triangular holes around their geometric centers from the initial positions. It is found that the band structure of the initial unit cell with rotation angle θ = 0° has two pairs of degenerate modes. At $ \theta = \pm 33^\circ $, a double Dirac cone appears at the center Γ point of the Brillouin zone without requiring the lattices to fold, and a band inversion occurs on both sides of $ \pm 33^\circ $ which can be characterized as a topological phase transition. The elastic band gap and two kinds of pseudospin states with clockwise or counterclockwise circulating mechanical energy flux patterns in the band structure are found by calculating the projected band structures of a supercell which is composed of phononic crystals with different topological phases. Based on this finding, different constructions of phononic waveguide are used for implementing the numerical analysis to demonstrate the back-scattering immunity of the edge states when disorder, tortuosity and cavity are introduced into the waveguide. Unidirectional robust propagation and multichannel waveguide switch due to the pseudospin-dependent one-way edge modes are also validated with numerical models. The phononic crystal plate presented in this paper provides a simple realizable method of designing the topologically protected elastic edge states. Keywords:topological phase transition/ elastic wave-guide/ elastic topological edge states/ phononic crystals
全文HTML
--> --> --> -->
2.1.声子晶体元胞模型
本文通过在均匀基板上周期布列三角形穿孔, 构造了如图1(a)所示的声子晶体板结构, 其元胞构型如图1(b)所示, 晶体板厚度$h = 4.2\;{\rm{ mm}}$, 元胞晶格常数$a = 8.7\;{\rm{ mm}}$, 晶格基矢${{{a}}_1}$和${{{a}}_2}$可分别表示为${{{a}}_1}=a(1/2, \sqrt 3 /2)$和${{{a}}_2}=a(1, 0)$. 元胞中包含一组关于短对角线对称的等边三角形通孔, 其几何中心分别位于元胞长对角线的两个三等分点处, 三角形穿孔边长$l = 3.7\;{\rm{ mm}}$, 蓝色三角形穿孔代表通孔的初始位置, 本文通过将两个三角形穿孔同时围绕其各自几何中心逆时针旋转$\theta $角度, 得到新的元胞结构(如黄色三角形所示)并研究旋转角度对元胞能带特性的影响. 图1(c)为该元胞所对应的第一布里渊区, 红色区域为不可约布里渊区. 基板材料参数为: 杨氏模量$E = 3.8\;{\rm{GPa}}$, 泊松比$\sigma =0.4$, 密度$\rho =1180\;{\rm{ kg}}/{{\rm{m}}^3}$. 图 1 声子晶体板结构、元胞及其布里渊区示意图 (a) 具有三角形穿孔的声子晶体板结构; (b) 声子晶体板的元胞; (c) 晶格的第一布里渊区和不可约布里渊区(红色区域) Figure1. Schematic diagram of phononic crystal plate structure, its unit cell and corresponding Brillouin zone: (a) The phononic crystal plate structure with triangular through-holes; (b) the unit cell of the phononic crystal plate; (c) the first Brillouin zone and irreducible Brillouin zone (red region) of the lattice.
22.2.声子晶体能带特性 -->
2.2.声子晶体能带特性
本文中的三角形穿孔声子晶体板元胞的能带结构如图2所示. 对于该声子晶体板, 板中的弹性波有水平剪切模、对称型兰姆模和非对称型兰姆模, 水平剪切模是一种粒子运动方向只有x方向和y方向的横向模, 其对应的模态振型如图2(a)左侧所示. 板中水平剪切模与其他弹性波模具有本质上的不同, 体现在以下两方面[21]: 首先, 水平剪切模没有面外z方向运动分量, 而其他弹性波模同时具有x方向、y方向和面外z方向的运动分量(如图2(a)右侧对应的模态振型), 水平剪切模的拓扑性质和其他弹性波模不相关; 其次, 水平剪切模和其他弹性波模能够分别被独立的激发出来, 例如使用垂直板平面外(z方向)的激励作用在板上时, 能够激发其他弹性波模的同时抑制水平剪切模. 通过对能带结构中对应本征态的位移分布进行分析, 很容易将水平剪切模与其他模区分开来[40]. 为更加清晰地区分出水平剪切模态能带与其他模态的能带, 定义模态极化指标 图 2 三角形穿孔声子晶体板在不同旋转角度下的能带结构与本征态z方向位移场分布 (a) $\theta =0^\circ $, ${p_ \pm }$模位于${d_ \pm }$模下方, 左侧插图为${P_z}=0$点所对应的水平剪切模振型, 右侧插图为${p_ \pm }$和${d_ \pm }$模态的位移场分布和振型, 能带结构中用不同颜色表示${P_z}$极化指标; (b) $\theta =33^\circ $, 偶然简并形成双狄拉克锥, 右侧插图为${p_ \pm }$和${d_ \pm }$模态的位移场分布; (c) $\theta =60^\circ $, ${p_ \pm }$模位于${d_ \pm }$模上方 Figure2. Band structure and displacement field distribution (DFD) in z-direction at eigenstates of the phononic crystal plate with triangular holes with different rotation angle: (a) $\theta =0^\circ $, ${p_ \pm }$ modes are below ${d_ \pm }$ modes. The left DFD demonstrates mode shape of shear horizontal mode corresponding to the ${P_z}=0$ points, while the right group of DFDs illustrate the mode shapes of ${p_ \pm }$ and ${d_ \pm }$ modes. The color of the points on the dispersion curves corresponds to the ${P_z}$ polarization index; (b) $\theta =33^\circ $, a double Dirac cone is formed, and the right DFDs show eigenstates distributions of ${p_ \pm }$ and ${d_ \pm }$ modes; (c) $\theta =60^\circ $, ${p_ \pm }$ modes are above ${d_ \pm }$ modes.
将TTCs与TNCs拼合构造超元胞结构, 以研究其能带结构特性. 从图4(a)可以看出, 该超元胞由5个$\theta =0^\circ $的TTCs元胞与5个$\theta =60^\circ $的TNCs元胞沿着y轴方向拼合而成, 并将上下侧设置为低反射边界(low reflecting boundary, LRB)条件, 晶格基矢${k_x}$所示方向为周期性边界条件方向. 图4(b)为通过有限元方法计算得到的该超元胞能带结构, 结果表明弹性波在该超元胞边界中存在禁带, 范围为$8.249 \times {10^4} — 8.831 \times {10^4}\;{\rm{Hz}}$, 且在禁带内形成的一对不同赝自旋方向相关的拓扑边界态, 被分别用红色点和蓝色点标出. 值得注意的是, 图中带隙内存在灰色圆圈为水平剪切模, 它与其他弹性波模互不相关. 图 4 (a) 由5个TTCs与5个TNCs组成的超元胞; (b) 该超元胞的能带结构图, 其中红色和蓝色点代表边界态, A和B点为波矢${k_x} = \pm 0.2{\text{π}}/a$时对应的边界态, 灰色圆圈表示水平剪切模; (c) 图(b)中A和B点对应的z方向位移场分布, 放大图显示了边界态处的机械能量通量方向 Figure4. (a) Supercell composed of 5 TTCs and 5 TNCs; (b) the band structure of the supercell in (a), red and blue dots represent the edge states, A and B dots represent the pseudospin states in ${k_x} = \pm 0.2{\text{π}}/a$, and the gray circles represent the shear horizontal modes; (c) the DFDs in z-directiona corresponding to points A and B in (b), the enlarged figure shows the mechanical energy flux direction.