Abstract:Because of its stable propagation characteristics and small attenuation in the medium, low-frequency (LF) electromagnetic wave can penetrate into the sea and underground with small loss. Although its transmission bandwidth is narrow, which limits its application range, it has irreplaceable wide applications in long-distance navigation, communication and frequency release, especially in underwater communication. Therefore, the study of low frequency/very low frequency (LF/VLF) propagation is of great theoretical and military value. In the LF/VLF communication systems, the transmitting antenna is an extremely important part, and its performance has an important influence on the whole system. However, the wavelength of the LF electromagnetic wave is very long. In order to obtain the ideal radiation effect, the traditional method needs a huge transmitting antenna system, which is too large in size and power consumption. Therefore, it will be a disruptive innovation in the field to realize a technology that can significantly reduce the size the existing LF/VLF information network communication system. In view of this, in this paper we propose a kind of LF/VLF signal transmitting antenna in which an excitation device is used to drive the polarization charge of the electret to move mechanically. By accelerating the charge to form a conductive alternating electromagnetic field which can generate and radiate electromagnetic wave, under the excitation of the wave source, it carries the energy and information in the form of energy flow and propagates in a certain medium. Then, through using the magnetic field receiving system to measure the magnetic field vector in the electromagnetic wave, the effective LF/VLF signal can be obtained, thus achieving the high electromagnetic wave effective radiation which overturns the restriction that the antenna size needs to be comparable to the wave length of the radiation signal in the traditional LF navigation communication system. At the same time, an analytical model of magnetic field propagation is established based on this structure, and the influence of antenna size, shape and other relevant parameters on the performance of antenna communication are studied as well. In order to reduce the loss of accuracy and improve the calculation speed, it is necessary to choose the correct analytical model and the appropriate parameters of magnetic field generated by the mechanical antenna according to the actual situation. The research work is of great significance for designing and optimizing mechanical antennas. Keywords:low-frequency communication/ mechanical antenna/ electret/ theoretical modeling
全文HTML
--> --> --> -->
2.1.驻极体式机械天线结构设计
本文讨论的低频机械天线采用机械运动方式加速驻极体材料上的驻极电荷, 以实现电磁波的高效辐射. 天线外壳为圆筒形, 并附着有对称且带有异种电荷的驻极体薄膜. 驻极体薄膜旋转时会产生方向相反的两股环形电流, 两电流所产生的磁场相互叠加, 以向外高效传播磁场. 天线结构如图1所示. 图 1 基于驻极体材料的圆筒形机械天线结构 Figure1. Cylindrical mechanical antenna structure based on electret material.
由于驻极体材料厚度较薄, 附着在一定支撑结构上进行旋转时薄膜的厚度可以忽略不计, 因此可将单层的驻极体材料及支撑结构构成的天线抽象成一个仅带有面电荷的圆筒(见图2(a)). 同时由于氟化乙丙共聚物(FEP)薄膜具有厚度薄、易加工的特性, 可利用驻极体材料完成多层、复杂结构的天线设计. 该种多层驻极体的天线结构可抽象成对应层数的同心圆筒(见图2(b)). 简化起见, 本文建模中将仅讨论圆筒形单层圆筒结构和两层同心圆筒结构的发射天线, 其中仅有圆筒外壁带面电荷, 其余部分不带电. 图 2 有多层驻极体薄膜的天线模型 (a)单层驻极体; (b)两层驻极体 Figure2. Antenna model with multilayer electret film: (a) Single layer; (b) double layers.
22.2.机械天线磁场传播模型建立 -->
2.2.机械天线磁场传播模型建立
32.2.1.平面带电圆环式天线的磁场传播模型 -->
2.2.1.平面带电圆环式天线的磁场传播模型
旋转驻极体式机械天线的天线外壳上附着有对称且带有异种电荷的驻极体薄膜, 驻极体薄膜旋转时会产生方向相反的两股环形电流, 进而产生磁场, 然后可以通过接收点处的磁场传感器获得磁场信号. 对于圆筒产生的磁场, 可认为是每一个平面圆环产生磁场的叠加, 因此可用每个平面圆环所产生磁场在竖直方向上的积分来计算. 由于驻极体材料厚度较薄, 且其支撑结构不带电, 所以可忽略带电体厚度, 将平面带电圆环简化为图3所示结构. 图 3 沿X轴的信号接收点磁场计算示意图 Figure3. Calculation diagram of magnetic field of signal receiving point along X axis.
在忽略发射天线尺寸时, 当天线转过一定角度, 如图4发射天线中的绿色部分和黄色部分产生的磁场会相互抵消(图4(a)), 所以(7)式转化为 图 4 信号接收点分布于X-Y平面时的磁场计算示意图 Figure4. Schematic diagram of magnetic field calculation when signal receiving point is distributed in X-Y plane.
对平面圆环产生的磁场在高度上积分(图5), 即可得到三维圆筒式天线的磁场传播模型, 下面分别讨论忽略发射天线尺寸和考虑发射天线尺寸时的磁场传播模型. 图 5 圆筒式天线所产生磁场计算示意图 Figure5. Calculation diagram of magnetic field generated by cylindrical antenna.
当天线结构为单圆筒时, 固定天线高度H为0.1 m, 分别设天线半径R = 0.55和1 m, 接收点处的磁感应强度如图6所示. 图 6 磁感应强度B随距离D变化(单圆筒) (a) R = 0.55 m, H = 0.1 m; (b) R = 1 m, H = 1 m Figure6. Change of magnetic induction intensity B with distance D (single cylinder): (a) R = 0.55 m, H = 0.1 m; (b) R = 1 m, H = 1 m.
图7给出了磁场传播模型误差E在不同天线结构中随距离D的变化. 不同天线结构仅对产生误差的大小有所影响, 并不影响误差变化的趋势. 图 7 误差E随距离D的变化 (a) 单层圆筒结构; (b) 双层圆筒结构 Figure7. Variation of error E with distance D : (a) Single cylinder; (b) double cylinder.
由3.3节的讨论可以发现, 圆筒形天线的高宽比对误差的影响很大, 因此本节探究不同高宽比对距天线表面距离相同点处误差的影响. 控制信号接收点距天线表面距离D恒为5.5 m, 比较圆筒形天线高宽比为0.1—10时是否考虑天线尺寸引起的误差大小, 结果如图8所示. 图 8 同一信号接收点处磁感应强度及误差与高宽比关系 (a) 单层圆筒结构; (b) 双层圆筒结构 Figure8. Relationship of magnetic induction intensity and error to ratio at the same signal receiving point: (a) Single cylinder; (b) double cylinder.
从图8不难看出, 双圆筒与单圆筒产生的误差变化规律相同. 图8(a)中单圆筒在高宽比为0.65附近达到峰值, 图8(b)中双圆筒在高宽比在0.7附近达到峰值. 当高宽比在0.1—0.65之间时, 随高宽比增加误差迅速增长, 当高宽比大于2之后随高宽比增长误差缓慢减小. 且随高宽比的增大, 在同一信号接收点产生的磁感应强度逐渐减小. 由此可知, 当信号接收点与天线距离较近时, 不同高宽比圆筒形天线计算磁感应强度时忽略天线尺寸带来的误差存在峰值, 当高宽比在0.1—0.2之间时可获得较小误差. 因此, 圆筒形天线的高宽比对误差影响很大, 在设计时需要加以注意. 为了进一步探究高宽比对不同信号接收点处误差的影响, 控制信号接收点距天线表面距离D恒为5.5, 10, 50 m, 比较高宽比在0.1—10时产生误差大小, 结果如图9所示. 图 9 不同距离信号接收点处误差与高宽比关系 (a) D = 5.5 m; (b) D = 10 m; (c) D = 50 m Figure9. Relation between error and ratio at signal receiving points of different distance: (a) D = 5.5 m; (b) D = 10 m; (c) D = 50 m.