1.Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China 2.Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China 3.College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China 4.School of Electronic and Information Engineering, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
Abstract: Pentamode metamaterial (PM) is a kind of artificial microstructure extremum material with solid morphology and fluid properties proposed by Milton and Cherkaey. By decoupling the compression and the shear waves, the periodic structure is difficult to be compressed, but the shear deformation occurs easily. Theoretically, acoustic metamaterials consisting of such periodic arrangement of structural units can achieve complete matching with water. Therefore, the characteristics of adjustable modulus anisotropy, small stuffing rate and broadband endow the PMs with excellent acoustic control ability, which has attracted more attention of researchers. In this paper, the narrow-diameter intersection point P (0.25a, 0.25a, 0.25a) of an isotropic three-dimensional PM selected as the reference point in four different directions (X-axis, Y-axis, Z-axis and body diagonal). When the P-point moves, the farther the P-point is, the greater the degree of anisotropy is. The introduction of anisotropy will cause the structural bifurcation of the three-dimensional PM to change structural parameters, and the structural parameters are important factors affecting the band characteristics of the three-dimensional PM of Bragg scattering. In order to study the influence of anisotropy on the band structure and pentamode properties of three-dimensional asymmetric double-cone PMs, we use the finite element simulation software COMSOL to calculate the primitive-cell of three-dimensional anisotropic PMs under Bloch boundary conditions. By adjusting the position of P point, four different types of three-dimensional anisotropic asymmetric double-cone PMs are constructed. Since the anisotropy changes in different directions have different effects on the parameters of the asymmetric double-cone structure, the band characteristics and the pentamode characteristics will also receive different degrees of influence. In this paper, the relationship between the degree of anisotropy and the band gap characteristics, single-mode region and figure of merit (FOM) are given, and the result can provide guidance for the design of asymmetric double-cone PM acoustic device. Compared with the isotropic double-cone PMs, the relative bandwidth of the first band gap of the anisotropic double-cone PMs can be broadened to 123%, and the FOM can be increased to 6.9 times. Due to the introduction of anisotropy, Due to the introduction of anisotropy, the structure of three-dimensional asymmetric double-cone PMs are more complex, the demand for sample fabrication is further improved, and the stability of PMs also reduced. Therefore, PMs with high stability and easy to be fabricated still needs further research and exploration. Keywords:pentamode metamaterial/ anisotropy/ phononic band gap/ broadband
全文HTML
--> --> --> -->
2.1.三维各向异性结构模型
三维各向同性非对称双锥五模超材料晶胞结构如图1(a)所示, 由十六个非对称双锥相交构成面心立方晶格. 非对称双锥的宽直径为D, 窄直径分别为d1和d2, 高度为H, 晶格常数为a. 构造三维各向异性五模超材料有很多方式, 其中最直接的方法就是: 选取一个原胞的窄直径交点P为参考点, 分别沿四个不同方向移动交点P来构造三维各向异性五模超材料, 对应的各向异性晶胞结构如图1(b)—图1(e)所示, 分别命名为模型1(X轴)、模型2(Y轴)、模型3(Z轴)、模型4(体对角线). 当点P (0.25a, 0.25a, 0.25a)如图1(a)所示时, 三维五模超材料为各向同性的, 其各向异性程度最低; 当P点移动时, 距离点(0.25a, 0.25a, 0.25a)的位置越远, 其各向异性程度就越高. 图 1 (a)各向同性五模超材料晶胞与(b)?(e)各向异性五模超材料晶胞结构示意图 Figure1. The unit cell structure of isotropy (a) and (b)?(e) anisotropic pentamode materials.
22.2.能带结构及品质因数 -->
2.2.能带结构及品质因数
各向异性的引入会对组成三维非对称双锥五模超材料原胞的基元结构参数H产生影响, 使得原胞内原本相同的四个基元变得不同, 从而影响原胞内部的本征振动形态. 因此, 各向异性会影响三维非对称双锥五模超材料的带隙特性、单模区域、压缩模量及剪切模量. 为了系统地研究各向异性对三维非对称双锥五模超材料的能带结构及五模特性的影响, 利用有限元仿真软件Comsol Multiphysics, 在布洛赫边界条件下对各向异性原胞进行数值计算. 原胞结构参数为 a = 37.3 mm, H = 16.15 mm, D = 3 mm, d1 = 0.6 mm, d2 = 0.3 mm. 组成材料的质量密度为1190 kg/m3、泊松比为0.4、杨氏模量 3 GPa. 图2为P点沿空间对角线方向偏移0.25倍对角线长度时所对应的能带结构图, 其中横纵坐标分别对应整个简约布里渊区边界与频率. 第一带隙(黑色区域)的下边界(fl)与上边界(fu)频率分别为 9.017与10.466 kHz, 对应的相对带宽$\left(\dfrac{{\Delta \omega }}{{{\omega _{\rm{g}}}}}\right. = \left.\dfrac{{{f_{\rm{u}}} - {f_{\rm{l}}}}}{{{{({f_{\rm{u}}} + {f_{\rm{l}}})} / 2}}}\right)$为0.149, 频率落在带隙范围内的压缩波和剪切波的传播均被抑制. 单模区域(灰色区域)的下边界与上边界频率分别为 0.457与2.333 kHz, 相对带宽为1.345. 在单模区域频率范围内, 压缩波与剪切波将被解耦合, 即只有压缩波可以传播, 剪切波将被抑制. 图 2P点沿空间对角线方向偏移0.25倍对角线长度时的能带结构 Figure2. The band structure of pentamode material with ${O_{\rm{s}}}P/\sqrt 3 a = 0.25$.
理想的三维五模超材料是难压缩、易形变的固体人工微结构, 其体积弹性模量B与剪切模量G具有较大比值. 为了描述单模区域对应压缩波与剪切波的解耦合能力, 将体积弹性模量B与剪切模量G的比值定义为品质因数(figure of merit). 品质因数越大, 五模超材料解除压缩波与剪切波耦合的能力就越好. 对于各向异性三维非对称双锥五模超材料, 弹性模量B与剪切模量G的值可由以下式子得到[26]: