1.School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China 2.College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China 3.Key Laboratory of Organic Electronics and Information Displays, College of Materials Science and Engineers, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Abstract:Localized surface plasmon resonance (LSPR) effect of metal nanoparticles (MNs) has been widely applied in organic light-emitting diodes (OLEDs) to improve the radiation of excitons. The LSPR wavelength and intensity of MNs and the coupling between MNs and excitons greatly affect the LSPR effect on exciton radiation. In this work, silica coated silver nanocubes (Ag@SiO2 NCs) were doped in the electron transport layer (ETL) of a solution-processed multilayered white OLED (WOLED). Due to the sharp edges and corners, Ag NCs have strong LSPR effect and can effectively enhance the radiation of nearby excitons. With an appropriate concentration of Ag@SiO2 NCs, the WOLED achieved two fold improvement in the current efficiency comparing with the control device without Ag@SiO2 NCs incorporated. The working mechanism of the Ag@SiO2 NCs based WOLED was investigated in detail. For the solution-processed OLED, excitons usually form and recombine near the interface of emission layer and electron transport layer (EML/ETL) because the commonly used host material (such as polyvinylcarbazole, PVK) has the unipolar hole transport property. So the Ag@SiO2 NCs in ETL greatly enhanced the radiation of the excitons located near the EML/ETL interface, which mostly contributed to the performance enhancement of the Ag@SiO2 NCs based WOLED. Study on a group of devices with Ag@SiO2 NCs doped in different locations indicated that Ag@SiO2 NCs in ETL showed more effective LSPR effect than those in hole injection layer. Electroluminescence and photoluminescence spectra of the WOLEDs declared that the Ag@SiO2 NCs simultaneously improved the radiation intensities of the blue and yellow excitons and helped the WOLED maintain the good chromaticity stability, which was mainly attributed to the wide LSPR wavelength range (450–650 nm) of the Ag@SiO2 NCs. The SiO2 coating layer of the Ag@SiO2 NCs played the important role in the LSPR enhanced emission. On the one hand, it formed an appropriated distance between the Ag NCs and the extions, helping to generate the strong coupling between them. On the other hand, it suppressed the effect of Ag NCs on charge trapping, keeping the stability of the carrier transport in the device. Our research demonstrate MNs can effectively improve the performance of OLEDs by carefully designing the device structure. Keywords:white organic light-emitting diodes/ Ag nanocubes/ localized surface plasmon resonance/ solution-processed electron transporting layer
全文HTML
--> --> -->
3.实验结果与讨论图2(a)和2(b)给出了银纳米立方包裹前后的透射电子显微镜(transmission electron microscope, TEM)图像. 从图中可以看出, 银纳米立方的平均边长为40 nm, 而SiO2壳层均匀地包裹着银纳米立方, 厚度约17 nm. 图2(c)给出电子传输层在400—650 nm波长范围内的吸收光谱, 可以看到掺入Ag@SiO2 NCs后, 电子传输层的吸收明显提高了. 在波长450 nm处出现一个吸收峰, 与银纳米立方的吸收峰相对应. 同时, Ag@SiO2 NCs引起的吸收增强的范围基本覆盖了蓝光和黄光的光致发光(photoluminescence, PL)光谱, 表明蓝光和黄光激子的发光可以激发Ag@SiO2 NCs的等离子体共振电场, 并进而增强激子的发光强度. 根据TEM图, 我们了解到所采用的Ag@SiO2 NCs的尺寸大于器件中电子传输层的厚度, 为了观察纳米粒子对电子传输层形貌的影响, 我们拍摄了掺有纳米粒子的电子传输层的扫描电子显微镜 (scanning electron microscope, SEM) 图像, 如图2(d)所示. 由于银纳米立方的掺杂浓度很低, 其在电子传输层中的分布十分稀疏, 我们将掺杂浓度提高为10%后, 观察到图2(d)所示的银纳米立方分布. 从图中可以看到, 部分尺寸较大的Ag@SiO2 NCs未被电子传输层完全覆盖而露出膜层. 但是纳米粒子的数量较少, 且未发生团聚, 因此对电子传输层形貌虽有一定影响, 但影响较小. 图 2 (a)银纳米立方和(b) Ag@SiO2 NCs的TEM图像; (c) TPBi和掺有Ag@SiO2 NCs的TPBi的吸收光谱, 以及FIrpic和PO-01的PL光谱; (d)掺有Ag@SiO2 NCs的TPBi表面的SEM图像 Figure2. TEM images of (a) Ag NCs and (b) Ag@SiO2 NCs; (c) Absorption spectra of TPBi and TPBi:Ag@SiO2 NCs, and PL spectra of FIrpic and PO-01; (d) SEM image of the surface of ETL doped with Ag@SiO2 NCs.
图3(a)给出一组WOLED的亮度-电压关系曲线, 其中ETL中掺有Ag@SiO2 NCs的器件, 掺杂浓度分别为1%, 1.5%和 2%, 而未掺杂Ag@SiO2 NCs的器件为基础器件. 由于采用溶液加工方式, 器件结构比较简单, 器件中电子和空穴的注入势垒比较高, 所以器件整体启亮电压偏高, 普遍在5—6 V之间. 但是从图中可以看到, 掺有Ag@SiO2 NCs的WOLED, 亮度明显高于基础器件. 当Ag@SiO2 NCs掺杂浓度为1.5%时, 器件的亮度达到最大值19427 cd/m2. 从图3(b)的电流密度-电压关系图可以看出, Ag@SiO2 NCs的掺入使器件电流略有增大, 但远小于其对器件亮度的提升. 由于Ag@SiO2 NCs的掺入大幅提升了器件亮度而对器件电流影响较小, 因此掺入Ag@SiO2 NCs后的WOLED的器件效率明显提高. 当Ag@SiO2 NCs掺杂浓度为1.5%时, WOLED的电流密度达到30.0 cd/A, 为基础器件的2倍, 表现出十分明显的效果. 图3(d)给出了这组器件的归一化电致发光(electroluminescence, EL)光谱, 可以看到银纳米立方的掺入基本没有影响器件光谱. 插图为银纳米立方浓度1.5%的优化器件在不同电压下的归一化EL光谱, 光谱基本不随电压变化, 可见掺入Ag@SiO2 NCs后, WOLED仍然表现出出色的色度稳定性. 图 3 掺有1%, 1.5%, 2% Ag@SiO2 NCs 的WOLED以及基础器件的光电性能 (a)亮度-电压; (b)电流密度-电压; (c)电流效率-亮度; (d)归一化光谱. 图(d)中的插图为掺有1.5%Ag@SiO2 NCs 的WOLED在不同电压下的归一化光谱 Figure3. (a) Luminance-voltage, (b) current density-voltage, (c) efficiency-luminance properties and (d) normalized electroluminescent spectra of the WOLEDs with 1%, 1.5%, 2% Ag@SiO2 NCs and the control device. The inset of Fig. (d) is the normalized electroluminescent spectra of the WOLED with 1.5% Ag@SiO2 NCs at different luminance.
a图3中的器件效率或效率增强幅度/图6中的器件效率或效率增强幅度; b 相对于图3中基础器件的效率增强幅度; c 相对于图6中基础器件的效率增强幅度.
表1WOLED器件的光电性能 Table1.Summary of the optoelectrical performances of the WOLEDs.
图 6 在WOLED中不同位置掺入Ag@SiO2 NCs后的器件性能 (a)电流密度-电压关系; (b) 亮度-电压关系; (c)电流效率-亮度关系 Figure6. (a) Current density-voltage, (b) luminance-voltage and (c) current efficiency-luminance properties of the WOLEDs with Ag@SiO2 NCs doped in different layers and the control device without Ag@SiO2 NCs.