1.State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China 2.Chongqing Vocational Institute of Engineering, Chongqing 400037, China 3.Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11104362), the Research Program of Basic Research and Frontier Technology of Chongqing, China (Grant No. cstc2018jcyjAX0812), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN201801212), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2019JM-017).
Received Date:17 March 2019
Accepted Date:31 May 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:We numerically calculate Luttinger liquid parameter K in the anisotropic spin XXZD models with spin $s = 1/2$, 1, and 2. In order to obtain groundstate wavefunctions in Luttinger liquid phases, we employ the $U(1)$ symmetric infinite matrix product states algorithm (iMPS). By using relation between the bipartite quantum fluctuations F and the so-called finite-entanglement scaling exponents $\kappa$, the Luttinger liquid parameter K can be extracted. For $s = 1/2$ and $D=0$, the numerically extracted Luttinger liquid parameter K is shown to be good agreement with the exact value. On using the fact that the spin-1 XXZD Hamiltonian with $ D \leqslant - 2$ can be mapped to an effective spin-1/2 XXZ model, we calculate the Luttinger liquid parameter for the region of $ D \leqslant - 2$. It is shown that our numerical value of the Luttinger liquid parameter agree well with the exact values, here, the relative error less than $1\%$. Also, our Luttinger liquid parameter at $\Delta = - 0.5$ and $ D = 0$ is shown to be consistent with the result form the density matrix renormalization group (DMRG) method. These results suggest that the $U(1)$ symmetric iMPS method can be applicable to calculate Luttinger liquid parameters if any system has a $U(1)$ symmetry for gapless phases. For instance, we present our Luttinger liquid parameters for the first time for the spin-1 XXZD model under the other parameters and the spin-2 XXZD model with $D = 1.5$. Keywords:infinite matrix product state/ Luttinger liquid parameter/ bipartite quantum fluctuations
具体的更新过程如图2所示, 由以下几个步骤组成: 图2(a)两点U门作用于具有$U(1)$对称的iMPS态上; 图2(b)缩并张量以及两点门U, 从而得到一个新的张量$ {\varTheta}$; 图2(c)对张量$ {\varTheta}$进行奇异值分解, 得到新的张量${ {X,Y}}$和$\tilde{ {\lambda}}^{\rm B}$; 图2(d)插入逆矩阵$ {\lambda}^{\rm A}$, 从而还原原来的原胞结构; 图2(e)得到更新的张量$\tilde{ {\varGamma}}^{\rm A}$, $\tilde{ {\varGamma}}^{\rm B}$和$\tilde{ {\lambda}}^{\rm B}$以及更新过的粒子数$\tilde{n_{r}}$. 值得注意的是它与之前不加$U(1)$对称性的iMPS算法的区别在于更新张量的同时, 也要一起更新粒子数n. 不断地交替作用两点门, 重复以上步骤, 直到系统的基态能量收敛, 便可以得到具有$U(1)$对称的iMPS表示的系统基态波函数. 有了波函数之后, 便可以计算想要研究的一些物理量. 图 2 更新具有$U(1)$对称的MPS的过程(a)把U门作用在具有$U(1)$对称的MPS上; (b)吸收U门缩并(a)中的张量使之成为一个两指标张量${ {\varTheta}}$;(c)对张量${ {\varTheta}}$进行奇异值分解(SVD), 得到新的张量X, Y和$\tilde{{ {\lambda}}_{\rm B}}$, 同时得到新的粒子数$\tilde{n_r}$;(d)插入逆矩阵, 还原原来的原胞结构; (e)得到更新的张量$\tilde{ {\varGamma}}^{\rm A}$, $\tilde{ {\varGamma}}^{\rm B}$和$\tilde{ {\lambda}}^{\rm B}$及粒子数$\tilde{n_r}$ Figure2. The process of update the U(1) symmetric MPS (a) applied gate U on the U(1) symmetric MPS, then contract the tensor network (a) into a single tensor ${ {\varTheta}}$. We compute the singular value decomposition of tensor ${ {\varTheta}}$, and get the new tensor X, Y和$\tilde{{ {\lambda}}_{\rm B}}$ and particle number $\tilde{n_r}$ as in (c). (d) Insert inverse matrix and restore the original tensor structure, we obtain the new tensor $\tilde{ {\varGamma}}^{\rm A}$, $\tilde{ {\varGamma}}^{\rm B}$, $\tilde{ {\lambda}}^{\rm B}$ and particle number $\tilde{n_r}$ as in (e).
表1自旋S = 1/2的XXZD模型在临界区的Luttinger液体参数K, 其中参数D = 0 Table1.Estimates for Luttinger liquid parameter K in the critical phase of spin S = 1/2 XXZD model with the parameter D = 0.
表2自旋$S = 1$的XXZD模型在临界区的Luttinger液体参数K, 固定参数$\varDelta = -0.5$ Table2.Estimates for Luttinger liquid parameter K in the critical phase of spin $S = 1$ XXZD model with the parameter $\varDelta = -0.5$.
表3自旋S = 2的XXZD模型在临界区的Luttinger液体参数K, 固定参数$D = 1.5$ Table3.Estimates for Luttinger liquid parameter K in the critical phase of spin S = 2 XXZD model with the parameter $D = 1.5$.