1.CAS Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2.Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11425523, 11661161018), and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY050000).
Received Date:04 June 2019
Accepted Date:13 June 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:The precise measurement of weak magnetic fields by using high-sensitivity magnetometers is not only widely used, but also promotes the development of many research fields. The magnetic field measurement capability of the magnetometer determines the potential and scope of its application, which means that research on its magnetic field measurement capability is essential.In this work, we develop a rubidium-xenon vapor cell atomic magnetometer. The cell filled with 5-torr 129Xe, 250-torr N2 and a droplet of enriched 87Rb is placed in the center of a five-layer magnetic shield with four sets of inner coils to control the internal magnetic field environment. In the cell, 129Xe is polarized by spin exchange collisions with 87Rb atoms, which are pumped with a circularly polarized laser beam at the D1 transition. If magnetic fields or pulses are applied to the cell, the polarization state of 87Rb and 129Xe will change and evolve, whose evolution process can be described by a pair of Bloch equations. The analysis of the Bloch equations indicates that the rubidium-xenon vapor cell atomic magnetometer can measure magnetic fields by two different methods. The magnetic field measurement capabilities of the two methods are experimentally calibrated respectively. The first method is to measure the alternating current (AC) magnetic fields by measuring the influence of the external magnetic fields on the polarization of the 87Rb atoms. The experimental results show that the sensitivity of the AC magnetic field measurement is about $1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $ in a frequency range of 2100 Hz, and the bandwidth is about 2.8 kHz. The second method is to measure the static magnetic fields by measuring the Larmor frequency of the hyperpolarized 129Xe in the cell. Considering that its measurement accuracy is limited by the relaxation of the hyperpolarized 129Xe, the transverse and longitudinal relaxation time are measured to be about 20.6 s and 21.5 s, respectively. Then, the experimental calibration results indicate that the static magnetic field measurement precision is about 9.4 pT and the measurement range exceeds 50 μT, which prove that the static magnetic field measurement can still be performed under geomagnetic field (50 μT). The rubidium-xenon vapor cell atomic magnetometer enables the measurement of AC magnetic fields and static magnetic fields in the same system. Compared with the spin exchange relaxation free (SERF) atomic magnetometer, the rubidium-xenon vapor cell atomic magnetometer has some unique advantages. For AC magnetic field measurement, it has a wider frequency range. For static magnetic field measurement, it can be performed under geomagnetic field and can give the magnetic field measurement value without using the calibration parameters of the system. These characteristics make the rubidium-xenon vapor cell atomic magnetometer have broad application prospects. It is expected to be applied to geomagnetic surveys, basic physics and other aspects of research. Keywords:hyperpolarized xenon/ free induction decay/ Larmor frequency/ magnetic field measurement
铷-氙气室原子磁力仪测量交流磁场的能力可通过在y轴方向施加已知大小、频率的系列交流磁场进行标定. 实验时, 铷-氙气室体系在$\left| {{B}} \right| = 0$情况下达到稳态后, 沿y轴方向依次施加强度为1.07 nT、 频率以100 Hz为步长的系列定标磁场, 并进行数据采集, 采集时间为5 s, 得到对应不同频率定标磁场的数据. 将数据分别作 FFT 得到磁场相对强度与频率信息, 绘图得到铷-氙气室原子磁力仪对磁场频率的响应曲线, 如图2(a)所示. 利用带宽公式$S(f) = {a / {\sqrt {{f^2} + {b^2}} }}$[6]对图中数据进行拟合, 其中$S(f)$为磁场频率取f时对应的磁场相对强度, a, b为常数. 由拟合结果可知$b \approx 2835.6$, 铷-氙气室原子磁力仪的带宽约为2.8 kHz. 利用带宽公式拟合结果、定标磁场大小、采样时间与FFT数据可得到各频率定标磁场的噪声曲线, 根据噪声曲线中信号附近的噪底平均水平, 可得到相应频率下的磁场测量灵敏度. 图2(b)—图2(d)分别是定标磁场频率为300, 1200与2100 Hz时得到的噪声曲线, 右上角给出对应频率下铷-氙气室原子磁力仪磁场测量的灵敏度, 分别约为1.1, 1.2与$1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }}$. 综上可得, 铷-氙气室原子磁力仪在2100 Hz频率范围内磁场测量灵敏度约为$1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }}$, 带宽约2.8 kHz, 其频率测量范围远超过SERF原子磁力仪几十到几百的带宽范围[8]. 图 2 (a) 铷-氙气室原子磁力仪频率响应曲线; (b) 300 Hz定标磁场噪声曲线; (c) 1200 Hz定标磁场噪声曲线; (d) 1200 Hz定标磁场噪声曲线 Figure2. (a) The frequency response curve of rubidium-xenon vapor cell atomic magnetometer; (b) the calibration magnetic field noise curve at frequency 300 Hz; (c) the calibration magnetic field noise curve at frequency 1200 Hz; (d) the calibration magnetic field noise curve at frequency 2100 Hz
24.2.铷-氙气室原子磁力仪测量静磁场能力的标定 -->
4.2.铷-氙气室原子磁力仪测量静磁场能力的标定
在3.3节中已说明, 铷-氙气室原子磁力仪对静磁场的测量可通过测量超极化$^{129}{\rm{Xe}}$在静磁场中的FID信号来实现, 这种磁场测量方式依赖于超极化$^{129}{\rm{Xe}}$的旋磁比, 无需借助系统的标定参数. 考虑静磁场的测量精度受限于超极化$^{129}{\rm{Xe}}$在静磁场中的弛豫时间, 以下将通过实验首先给出对超极化$^{129}{\rm{Xe}}$弛豫时间的测量, 然后再对铷-氙气室原子磁力测量静磁场的能力进行标定. 对于超极化$^{129}{\rm{Xe}}$的横向弛豫时间, 可通过测量施加${{\text{π}} / 2}$脉冲后超极化$^{129}{\rm{Xe}}$的FID信号得到. 实验中, 沿z轴施加静磁场, 待铷-氙气室体系达到稳态后, 沿x轴方向施加$^{129}{\rm{Xe}}$的${{\text{π}} / 2}$脉冲并采集数据100 s, 得到超极化$^{129}{\rm{Xe}}$的FID信号, 如图3(a)所示. 利用公式${S_{{\rm{FID}}}}(t) = {S_{{\rm{FID}}}}(0){{\rm{e}}^{{{ - t} / {{T_2}}}}}$对图3(a)中FID信号的包络线进行拟合, 其中${S_{{\rm{FID}}}}(t)$为t时刻FID信号的振幅强度. 由拟合结果得超极化$^{129}{\rm{Xe}}$的横向弛豫时间${T_2}$约为20.6 s. 对超极化$^{129}{\rm{Xe}}$的FID信号进行FFT可得到其信号强度与拉莫频率信息, 如图3(b)所示. (实验所用$^{129}{\rm{Xe}}$的${{\text{π}} / 2}$与${\text{π}}$脉冲是通过对铷-氙气室体系施加强度相同、时长不同的脉冲, 并测量超极化$^{129}{\rm{Xe}}$信号强度随脉冲时长变化的拉比振荡曲线来确定其施加方式的). 图 3 (a) 超极化$^{129}{\rm{Xe}}$的FID信号; (b) FID信号的FFT Figure3. (a) FID signal of the hyperpolarized $^{129}{\rm{Xe}}$; (b) FFT of the FID signal.
对于超极化$^{129}{\rm{Xe}}$纵向弛豫时间的测量, 我们采取传统的方法: 翻转恢复法[34]. 铷-氙气室体系在仅有z轴静磁场情况下达到稳态后, 通过在x轴方向施加$^{129}{\rm{Xe}}$的${\text{π}}$脉冲, 将超极化$^{129}{\rm{Xe}}$的磁化矢量翻转至–z方向, 在自由演化时间$\tau $后, 沿x轴方向施加$^{129}{\rm{Xe}}$的${{\text{π}} / 2}$脉冲, 采集数据并进行FFT得到超极化$^{129}{\rm{Xe}}$的信号强度. 之后逐渐增大自由演化时间τ进行多次重复测量, 直至信号强度不再增大. 绘制信号强度随τ变化的曲线, 如图4所示. 利用公式${S_{{\rm{FFT}}}}(\tau ) = {S_{{\rm{FFT}}}}(0)(1 - 2{{\rm{e}}^{ - {\tau / {{T_1}}}}})$对曲线进行拟合, 其中${S_{{\rm{FFT}}}}(\tau )$为自由演化时间为τ时对应的超极化$^{129}{\rm{Xe}}$的信号强度. 由拟合结果可得超极化$^{129}{\rm{Xe}}$的纵向弛豫时间${T_1}$约为21.5 s. 图 4 超极化$^{129}{\rm{Xe}}$信号强度随时间τ的变化曲线 Figure4. The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus time τ.
铷-氙气室原子磁力仪测量静磁场能力可通过其对静磁场测量的精度与范围来表征, 两者可通过以下实验分别给出. 静磁场测量精度可由铷-氙气室原子磁力仪测量静磁场的不确定度表示. 理论上, 通过在z轴方向施加恒定静磁场, 长时间重复测量超极化$^{129}{\rm{Xe}}$拉莫频率的变化即可确定铷-氙气室原子磁力仪静磁场测量的不确定度. 实验中利用Keithley公司的6220精密电流源连接z轴匀场线圈产生的磁场来代替恒定静磁场(本文所有实验所用静磁场均通过此种方式施加). 考虑电流源自身不稳定性会导致拉莫频率的变化, 利用上述方法最终测得的不确定度, 还需扣除电流源自身不稳定性导致的测量不确定度, 才能真正反映对静磁场测量的精度. 因此, 以下实验分为长时间重复测量超极化$^{129}{\rm{Xe}}$拉莫频率变化情况与电流源不稳定性测试两部分, 将其分别称为实验一与实验二. 对于实验一, 设置电流源输出量程与大小均为2 mA. 待铷-氙气室体系达到稳态后, 沿x轴方向施加$^{129}{\rm{Xe}}$的${{\text{π}} / 2}$脉冲, 采集数据80 s, 连续重复实验536次. 对采集的所有数据进行FFT, 拟合FFT数据得到超极化$^{129}{\rm{Xe}}$拉莫频率的变化情况, 绘制概率密度统计分布直方图, 并利用高斯分布函数对图中数据进行拟合, 得到图5(a). 高斯函数的拟合结果给出超极化$^{129}{\rm{Xe}}$拉莫频率的均值约为3.5232 Hz, 标准差约为$1.449 \times 1{0^{ - 4}}$ Hz, 拟合结果较好. 图 5 超极化$^{129}{\rm{Xe}}$拉莫频率的概率密度统计分布直方图 (a) 由铷-氙气室原子磁力仪系统本身与电流源不稳定性导致; (b) 由电流源不稳定性导致 Figure5. Probability density statistical distribution histogram of the Larmor frequency of the hyperpolarized $^{129}{\rm{Xe}}$: (a) Caused by the rubidium-xenon vapor cell atomic magnetometer system itself and the current source instability; (b) caused by the current source instability.
对于实验二, 电流源输出设置与实验一完全相同. 电流源启动后, 利用皮安表对其实时输出的电流进行测量并记录, 得到含有996个电流值的数据. 同样对电流值数据绘制概率密度统计分布直方图、利用高斯分布函数拟合得: 电流均值与标准差分别约为2.00055, $5.33 \times 1{0^{ - 5}}$ mA, 高斯函数拟合结果较好. 考虑电流值与实验一数据分布均为近高斯型, 将电流值数据乘以拉莫频率均值与电流均值的比值, 近似得到单纯由电流源不稳定性导致超极化$^{129}{\rm{Xe}}$拉莫频率变化的数据, 其均值与标准差分别约为3.52315 与$9.39 \times 1{0^{ - 5}}$ Hz, 对此数据绘制概率密度统计分布直方图, 并用高斯函数进行拟合, 得到图5(b). 铷-氙气室原子磁力仪单次测量静磁场的不确定度可由以上数据的拉莫频率标准差表示. 通过将实验一与实验二所得的拉莫频率标准差分别平方后相减, 再求其差值的算数平方根, 最终结果可近似认为已扣除由电流源不稳定性导致超极化$^{129}{\rm{Xe}}$拉莫频率的变化, 得到铷-氙气室原子磁力仪在测量静磁场时由其自身引起的拉莫频率不确定度约为${\rm{1}}{\rm{.104}} \times 1{0^{ - 4}}$ Hz, 除以$^{129}{\rm{Xe}}$的旋磁比可得铷-氙气室原子磁力仪静磁场测量精度约为9.4 pT. 静磁场测量范围可通过以下实验给出. 通过分别在$ \pm \;z$轴方向不断增强静磁场强度, 并采集相应磁场强度下超极化$^{129}{\rm{Xe}}$的FID进行 FFT, 得到超极化$^{129}{\rm{Xe}}$信号强度随静磁场强度增加的变化曲线, 如图6所示. 图 6 超极化$^{129}{\rm{Xe}}$信号强度随静磁场强度的变化曲线 Figure6. The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus the static magnetic field strength.