Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11575121) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).
Received Date:27 March 2019
Accepted Date:16 May 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:The expansion and transportation of supersonic molecular beams is a complex process of molecular dynamics, and the related parameters are difficult to calculate accurately. Currently there is no rigorous theory to accurately predict the beam expansion process under specific valve conditions, and current researches are less concerned with the spatial evolution of supersonic molecular beam characteristics over long distance. In addition, time-of-flight mass spectrometry is not well suitable for supersonic molecular beam injection in the field of magnetic confinement fusion. Therefore, based on microphone measurements, the average velocities of several supersonic molecular beams (H2, D2, N2, Ar, He, CH4) in the process of free expansion and their evolutions in the far-field space (flight distance/nozzle diameter > 310) are studied in this work. The variations of velocity distribution with gas type, temperature, pressure and expansion distance are obtained. The results show that the velocities of H2, D2 and He beams account for only 54%, 60% and 68% of their ideal limit velocities, respectively, and their velocities decrease rapidly in the far-field space. The velocities of CH4, N2 and Ar beams are very close to their limit velocities, accounting for 85%, 92% and 99% respectively, and their velocities decrease slowly in the far-field space. And the results show that the velocities of the H2 and D2 beams increase with the source pressure, while the velocities of the other four molecular beams decrease slightly with the source pressure. And it is found that the velocity of supersonic beam without skimmer is negatively correlated with the square root of the molecular mass. For the effect of temperature on velocity, the results show that the velocities of H2 and D2 beams increase with the source temperature but are smaller than their limit velocities at given temperature, and the difference is larger for higher temperature. The results of this experiment provide basic data for controlling the parameters of the supersonic molecular beam by adjusting the temperature and pressure of the gas source, which will contribute to the application of supersonic molecular beams in fusion reactor fueling technology. And this study will contribute to further exploration of the evolution of supersonic molecular beam properties in the far-field space. Keywords:microphone/ supersonic molecular beam/ free expansion/ velocity distribution
全文HTML
--> --> --> -->
3.1.定时误差
首先, 研究了系统的定时误差. 针对同一实验条件进行了多次测量, 获得了定时差值结果以及频率分布如图2所示, 结果表明时间晃动的标准差为0.0097 ms. 这一波动来自于实验背景噪声和射流的不稳定性, 此外也包含了阀门开启时间的抖动以及麦克风响应的抖动误差, 它们会引起拟合速度结果的误差. 对引起的拟合速度误差verr进行估算, 如下式: 图 2 多次测量定时误差 (a)和频率分布直方图(b) Figure2. Timing error (a) and frequency distribution histogram (b) of multiple measurements
对测量的距离-时间结果的每相邻的两个距离点进行拟合, 由于分别在四个轴向位置处进行了测量, 可得到分子束在三个距离段上的平均速度, 距离段Ⅰ对应310—700 mm, 距离段Ⅱ对应700—1085 mm, 距离段Ⅲ对应1085—1695 mm. 这样就得到了6种(H2, D2, N2, Ar, He, CH4)分子束在远域空间(310—1695 mm)的轴向速度分布, 如图3所示. 结果表明, 沿着束流出射方向, H2和D2分子束的速度从距离段I到距离段Ⅱ变化不大, 但在距离段Ⅲ明显下降: 其中H2下降140 m/s, D2下降120 m/s. 而CH4和N2的速度在各距离段变化较小, 分别下降了为81 m/s和53 m/s. 其原因很可能是受真空靶室的限制作用, 与靶室壁碰撞的分子反弹影响真空环境, 在背景真空的粒子作用下, 导致气流在远域空间经碰撞形成等温湍流, 从而引起分子束速度逐渐下降. 图 3 压强P0为50 bar时, 超声分子束速度随轴向距离的变化规律 (a) H2, D2和He的速度结果; (b) N2, Ar和CH4的速度结果 Figure3. The velocity of the supersonic molecular beam varies with the axial distance when the pressure P0 was 50 bar: (a) The velocity results of H2,D2 and He; (b) the velocity results of N2,Ar and CH4.
此外, 测量得到的在第一个距离段(300—710 mm)内, 各分子束速度在不同源压强下(10—50 bar)的速度分布, 如图4所示. 结果表明, 在10—50 bar范围内, H2和D2分子束的速度随源压强的增加而增大, 与赵大为等[35]采用CCD相机测量的H2分子束速度随源压强的变化趋势以及Reisinger等[27]利用飞行质谱法研究的D2分子束速度随源压强的变化趋势较为一致. 然而, 除去源压强低于20 bar的点, He, Ar, N2和CH4分子束的速度随源压强增加而下降. 其中Ar的结果与Christen等[9]利用飞行质谱法研究的Ar分子束的速度随源压强下降的趋势较为一致,而He的测量结果与Eder等[36]利用质谱法测量的He分子束的速度随源压强增大的结果不太相符. 实验表明, 喷气气压对超声分子束的速度有较大影响. 而不同种类的气体分子束, 其速度同气压的变化规律并不相同, 这应该与不同种类气体的性质以及喷气时的状态参数有关. 因此, 在超声分子束加料实验中, 可通过调节源压强来对超声分子束的速度进行适当的调节. 此外, 已有实验研究表明[8,25], 在不同的温度下超声分子速度随源压强的变化趋势也会变化, 因此还需要更多更深入的理论模拟研究进行解释. 图 4 H2, D2和He分子束(a), 以及N2, Ar和CH4分子束(b)的飞行速度随源压强的变化曲线 Figure4. The curves of the velocities of H2, D2 and He molecular beams (a) and N2, Ar and CH4 molecular beams (b) with pressure.
实验结果显示, H2分子束的速度为1392—1572 m/s, 高于董贾福等[11]在背景真空度10–3 Pa以10 bar源压强产生的超声分子束的测量速度结果1200 m/s; 而与赵大为[35]在背景真空度1×10–4 Pa以源压强6 bar产生的超声分子束的测量速度结果1682 m/s较为接近; 并且, 该速度仅占氢气理论极限速度2931 m/s的54%. D2的速度在1083—1234 m/s之间, 为其极限速度2086 m/s的60%, 该结果与采用飞行时间质谱方法在T0 = 310 K时测量得到的D2束流速度(1925—2025 m/s)[8]相比, 速度明显降低. He的速度在1048—1174 m/s, 也小于Eder [36]等利用飞行时间质谱法实验测得的1760—1780 m/s和Christen [18]利用飞行时间质谱法测得的1825 m/s的结果, 且只占其理论极限速度1757 m/s的68%. 这也说明, 对于超声分子束注入(SMBI)加料研究, 由于采用自由膨胀束流, 且喷气时间较长(毫秒量级), 受实际分子间相互作用影响较大, 不能直接采用之前飞行时间质谱法测量的接近理想状况的结果. 而对于N2, CH4和Ar分子束, 它们的速度同各自极限速度较为接近: 甲烷分子束的平均速度占其极限速度1157 m/s的85%; 氮气分子束平均速度为其极限速度786 m/s的92%; 氩气分子束的平均速度非常接近极限速度557 m/s. 超声分子束速度和分子量的关系如图5所示. 结果表明, 尽管小于理想极限速度, 实验中分子束速度与分子量仍然成反比, 且分子量越大越接近极限速度. 我们认为当测量得到的速度接近估算的极限速度时, 束流中有团簇生成. 如表1所列, 对比结果表明, 利用本实验所采用的圆柱喷嘴, 常温下, H2, D2和He束流不能形成团簇, 而CH4, Ar和N2束流能够形成团簇. 为了对以上的束流成团估计进行验证, 利用Hagena经验公式[37], 也可以观察束流在不同源温度下的成团情况. Hagena经验公式表示为 图 5 六种超声分子束的速度与分子量之间的关系 实心方形■代表在50 bar源压强下速度的测量结果, 空心圆○代表估算的极限速度结果 Figure5. The relationship between the velocities of the six supersonic molecular beams and their molecular weights. The solid square ■ represents the measured velocity at 50 bar source pressure, and the hollow circle ○ represents the estimated limit velocity.
Gas
H2
D2
N2
Ar
He
CH4
T/℃
22
26
24
26
24
24
vfit/m·s–1
1392—1572
1083—1234
609—727
497—556
1048—1174
847—984
vlim/m·s–1
2931
2086
786
557
1757
1157
表1H2, D2, N2, Ar, He和CH4的实验拟合速度和各自极限速度的对比 Table1.Comparison of the experimental fitting velocities and the limit velocities of H2, D2, N2, Ar, He and CH4.