1.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China 2.Institute of Applied Physics and Computational Mathematics, China Academy of Engineering Physics, Beijing 100094, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11575165, 11775200) and the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB108006).
Received Date:16 September 2018
Accepted Date:07 May 2019
Available Online:01 August 2019
Published Online:05 August 2019
Abstract:Fission reaction rate is an important index for validating and checking the neutron transportation and fission power in nuclear engineering. The experimental data can be used in benchmark validation of cross sections, and in studying the correlation of fission power with the thickness of uranium sphere shell. There are five assemblies of depleted uranium shells used in this work, the inner radii of which are all fixed at 13.1 cm, while their outer radii are 18.1, 19.4, 23.35, 25.4 and 28.5 cm, respectively. The D-T neutron source is generated in the center of the assemblies, the yield of which is about 3 × 1010?4 × 1010 s–1. In horizontal plane across the center of the assemblies, the fission rates at positions along the radial direction are measured in the direction with 45° inclining with respect to the incident D+ beam. Due to the disturbance to assemblies and neutron field, the activation foil of uranium is a suitable choice rather than fission chamber or capture detector. The material of activation foil is the same as that in the experimental assemblies. Considering the accurate fission yield of 143Ce, the objective nuclides are selected. The total fission yield of 143Ce is contributed by 238U and a little 235U. For calculating the total fission yiled of 143Ce, the neutron energy range of 0?15 MeV is divided into eight subranges. By measuring the 293 keV gamma rays from the fission product 143Ce in activation foils with a TRANS-SPEC-DX100 HPGe detector, with a relative efficiency 40%, the fission rates and the trends at positions along the radial direction in the five assemblies are obtained based on the 143Ce fission product yield. The fission rate ranges from 5.28 × 10–29 to 7.58 × 10–28 sn-1·nuclide–1, with the relative uncertainty in a range from 6% to 11%. The Monte Carlo transport code MCNP5 and continuous energy cross section library ENDF/BV.8 are used for analyzing the fission rate distribution in the assemblies, and the experiemtal configuration, including the wall of the experimental hall is described in detail in the model. The calculated results are compared with the experimental ones and their agreement is found to be in an uncertainty range. Keywords:depleted uranium/ fission reaction rate/ 143Ce/ fission product yield
贫化铀装置[21]共分五种模型, 内半径Rin均为13.1 cm, 外径及组合厚度见表1. 贫化铀的密度为(18.8 ± 0.1) g/cm3, 其中238U和235U同位素丰度分别为99.58%和0.416%[22]. 在装置的水平径向留有放置D+离子束流漂移管的靶室孔道, 水平方向与D+粒子漂移方向呈45°和90°方向留有两条测量孔道, 竖直方向有一条测量(吊装)孔道, 靶室孔道及测量孔道直径均为44 mm. 本次实验在45°孔道开展实验.
模型编号
外半径Rout/cm
厚度L/cm
1
18.10
5.00
2
19.40
6.30
3
23.35
10.25
4
25.40
12.30
5
28.45
15.35
表1五种贫化铀球壳的外径及厚度 Table1.Radius and thickness of depleted uranium shells.
实验测量时需在测量孔道内放置一个贫化铀套筒, 与套筒匹配有不同厚度(5, 10, 20和30 mm)的圆柱形贫化铀塞块, 用于填充活化探测器之外的空间, 以尽可能保证贫化铀球壳的完整性, 最大限度避免空腔效应及其他材料对贫化铀球壳中子场的扰动. 贫化铀装置及其蒙特卡罗模型分别见图1(a)和图1(b), 贫化铀装置置于一铁支架上, 其中心与中子源中心重合(偏差 < 3 mm). 活化探测器与塞块交替放置在套筒内, 它们的材料成分均与贫化铀装置一样的, 5片活化探测器在装置中的分布情况见图1(b)中“1, 2, 3, 4, 5”. 为降低实验大厅散射中子本底影响, 实验装置距离实验大厅周围墙壁、地面及屋顶的距离均在3.5 m以上. 图 1 (a)贫化铀装置实物图; (b)蒙特卡罗模型5片活化探测器分布情况(45°方向中的1, 2, 3, 4, 5) Figure1. (a) Physical map of depleted uranium device; (b) distribution of five activation detectors in Monte Carlo Model 5 (1, 2, 3, 4, 5 in the direction of 45°).
22.3.活化探测器 -->
2.3.活化探测器
实验时, 每种模型均布放5片活化探测器, 活化探测器位置pi见(距中子源距离)表2. 测量孔道与D+粒子入射方向呈45°, 测量孔道内放置贫化铀套筒, 活化探测器置于贫化铀套筒内, 活化探测器之间用贫化铀塞块填充. 套筒内径Φ3.2 cm, 外径Φ4.2 cm, 活化探测器直径Φ2.4 cm, 标称厚度0.2 mm, 塞块直径Φ3.15 cm.
模型编号
L/cm
p1
p2
p3
p4
p5
1
13.60
14.62
15.64
16.16
17.18
2
14.60
15.62
16.64
17.66
18.68
3
14.60
16.62
18.64
20.66
21.68
4
15.60
18.62
20.64
22.66
24.68
5
15.60
18.62
20.64
24.16
27.18
表2五种模型中活化探测器的布放位置 Table2.Position of activation detector in various models
图 3 五种模型中的裂变反应率分布情况 Figure3. Fission reaction rate distribution for five models.
从图3可以看出: 1)每种模型, 随着距中子源距离L的增加裂变反应率逐渐变小, 厚模型变化幅度比薄模型变化幅度更大, 主要原因是距中子源越远中子通量密度越小, 裂变反应率自然降低; 2)相同测量位置, 模型越厚, 裂变反应率越大, 原因是外层贫化铀球壳的屏蔽与反射作用使得测点处中子通量密度增大, 为此用蒙特卡罗模拟计算了各模型测量位置处的中子通量密度, 结果见图4. 实验结果的不确定度主要来自中子产额、裂变产额和γ射线测量三个方面. 实验前对α探测器和靶片在靶管中的几何位置进行了准确测量, 对准直光栏孔径采用显微镜进行了测量, 各向异性修正因子通过查表得到, 保证了中子产额的不确定度小于2.5%[24]. 裂变产额不确定度小于5%. γ射线测量的不确定度主要来自HPGE探测器探测效率、γ射线自吸收因子[25]及γ谱解谱. 探测效率用系列标准源进行了标定, 不确定度小于2%[26], 自吸收因子进行了理论模拟及实验验证, 不确定度小于0.5%, 解谱不确定度为2%—10% (不同位置处活化探测器不确定度不同). 五种模型各位置裂变反应率的总不确定度见表4. 图 4 五种模型不同测量点处的中子通量密度(蒙特卡罗模拟计算) Figure4. Neutron flux density at various measuring positions of five models (Monte Carlo simulation).
Position
Model 1
Model 2
Model 3
Model 4
Model 5
p1/%
6.5
6.5
6.5
7.4
6.1
p2/%
6.2
6.3
5.7
7.2
7.0
p3/%
6.5
5.8
6.7
8.6
10.0
p4/%
6.5
6.3
6.5
9.5
9.5
p5/%
6.5
6.1
7.0
10.9
10.9
表4裂变反应率总不确定度 Table4.Synthesize uncertainty of fission reaction rate.
23.2.蒙特卡罗模拟与实验比较 -->
3.2.蒙特卡罗模拟与实验比较
利用MCNP5程序和ENDF/VI.8数据库对五种模型进行理论模拟, 用F4栅元卡配合计数乘子卡F4得到了不同测量位置的裂变反应率, 不确定度小于3.4%. 为更清晰地分析计算值与实验值的差异, 用计算值与实验值的比值(C/E)来进行表征, 结果见图5. 可以看到, 五种实验模型C/E值介于0.9至1.1之间, 表明计算与实验在10%以内符合, 且对于大部分测量位置其比值都落在测量标准不确定度范围之内. 图 5 贫化铀装置中不同位置裂变率C/E值 Figure5.C/E ratio of fission reaction rate for various measuring position in depleted uranium assembly.