1.College of Materials, Xiamen University, Xiamen 361005, China 2.School of Aerospace Engineering, Xiamen University, Xiamen 361102, China 3.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701603), the Natural Science Foundation of Fujian Province, China (Grant No. 2016J01256), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51601161), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 20720170048).
Received Date:26 December 2018
Accepted Date:14 May 2019
Available Online:01 August 2019
Published Online:05 August 2019
Abstract:In this paper, a composite physical property calculation software—Composite Studio is developed based on the modified effective medium theory. The computing kernel of the software is written in C++ language and its GUI is designed by Qt. With the development of the computation technique, the material genome project is proposed, which tries to shorten the period of the material design by high-throughput computation, data mining and property database establishment. On a mesoscopic scale, there are several kinds of the models to calculate the physical properties of the composite materials. However, these models usually have the formula in quite a lot of kinds of forms. A general commercial software for physical property calculation on a mesoscopic scale is still leaking. The software uses Green’s function to solve the constitutive equations. It calculates the effects of microstructural factors on physical properties. These factors include volume fraction, aspect ratio of reinforce particles, orientation distribution, and macroscopic orientation. It can obtain more than 10000 composites by freely combining four microstructure factors. The operation process of software includes 5 steps. The first step is to choose the materials of matrix and reinforcement. The second step is to select the shape type of reinforcement. The third step is to set the range of values for the microstructure factors of the composite materials. The fourth step is to choose the calculation model and start calculations. The last step is to plot and analyze the results. In addition, researchers can directly have the calculation results through the single point analysis module of the software. We use several two-dimensional line plots to display multi-dimensional calculation results. This is convenient and efficient for researchers to observe and analyze the results. Until now, two calculation modules were developed in Composite Studio, i.e. the elastic modulus calculation module and the dielectric constant calculation module. The software can be applied to different computer systems. In the future, the Composite Studio can be used as a general-purpose calculation tool embedded into an server platform for popular composite design. Keywords:effective medium theory/ physical properties/ microstructure/ software design