1.Centre of Excellence for Advanced Materials, Dongguan 523808, China 2.ISIS Neutron and Muon Source, Harwell OX11 0QX, United Kingdom 3.Songshan Lake Laboratory for Materials Science, Dongguan 523808, China 4.Shanghai Aircraft Manufacturing Co.,Ltd, Shanghai 200436, China 5.Materials Engineering Department, Open University, Milton Keynes MK7 6AA, United Kingdom 6.Research Institute for Future Transport & Cities, Coventry University, Coventry CV1 5FB, United Kingdom
Fund Project:Project supported by the Introducing Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06G025).
Received Date:29 December 2018
Accepted Date:07 May 2019
Available Online:01 July 2019
Published Online:05 July 2019
Abstract:The ISIS Neutron Facility of Rutherford Appleton Laboratory (RAL) in the UK plays an important and world leading role in in-situ engineering materials testing, one of the most typical neutron diffractometers known as Engin-X, used to measure residual stress and phase transformation and to do micromechanics research, through using different sample environment equipment, such as mechanical fatigue loading frame, cryogenic temperature furnace of cooling the sample down to 1.5 K and particularly high temperature furnace of heating the sample up to 1100 ℃ under loading condition. The present maximum heating capability of the Engin-X high temperature furnace at ISIS can be increased to above 1100 ℃, that would allow more extremely challenging high temperature engineering problems around the world to be investigated. With this ambition in mind, in this paper we use TracePro software initially to optimize the geometry of the present Engin-X furnace reflectors and their configurations’ arrangement. One is to use ellipse-sphere combination and the other is to use ellipse-sphere-ellipse combination to replace the present Engin-X high temperature furnace’s half ellipse reflector geometry. The results show that the former plus further reflector surface coating and reasonable side shielding arrangement result in a total increase of 109% of energy absorption by the sample. The latter makes a further 6% of increase of energy absorption by the sample. Such results are further checked by subsequent ANSYS thermal analysis to investigate the temperature distributions within the centre portion of the sample. The ANSYS simulation results further reveal that both the ellipse-sphere and ellipse-sphere-ellipse configurations are able to increase the maximum capability of the Engin-X high temperature furnace at ISIS from the present 1100 ℃ to 1399 ℃ and 1423 ℃, respectively. In this paper, we present the details of the simulations and all the configurations of the Engin-X high temperature furnace. Keywords:ISIS/ in-situ experiment/ sample environment/ high temperature furnace
图 5 (a)椭圆–圆组合反射罩下样品能量吸收对比; (b)椭圆–圆组合反射罩和椭圆–圆–椭圆组合反射罩下样品最优能量吸收对比 Figure5. (a) Sample energy absorption comparison under combined ellipse-sphere reflector; (b) sample energy absorption comparison between optimized ellipse-sphere and optimized ellipse-sphere-ellipse reflector.
参考椭圆-圆模拟结果, 可以假定椭圆-圆-椭圆组合反射罩中外椭圆弧深度与第一焦距L1值相等, TracePro模拟椭圆-圆-椭圆结构下的最优能量吸收结果如图5(b)(粉线)所示, 整体变化趋势与椭圆-圆组合反射罩模拟结果类似但样品的能量吸收略优10%, 增加相同设置的反射挡板后较椭圆-圆组合反射罩挡板模型提升了6%. 4.高温炉温度场模拟计算采用ANSYS软件对椭圆-圆组合反射罩结构的高温炉温度场进行热模拟计算, 模拟计算的加热单元几何结构与TracePro中光路模拟结构保持一致, TracePro模拟计算得到的样品吸收能量值同时作为输入参数代入热计算. 选用的标准棒状试样中间段长度42 mm(螺纹段除外)、直径8 mm, 仅考虑反射罩单一结构优化, 此时试样最高加热温度可达1291 ℃; 从应用角度考虑, 参照上文轴向、侧向挡板设置方案进行分析, 试样中轴线温度分布见图6(a), 温度从中心往轴向两侧逐渐降低. 中子衍射实验试样的取样大小典型值为4 mm × 4 mm × 4 mm的立方体, 为了进一步研究取样范围内的温度分布, 选取棒状试样中心位置4 mm × 4 mm × 4 mm的体积元并沿着试样轴向、径向各截取中心面, 相应的温度分布分别见图7(a)和图8(a). 从两个横截面温度分布可以看出, 选取的体积元内温度差可控制在5 ℃以内, 最高温度约为1399 ℃, 且从表面到中心逐渐降低. 图 6 热模拟中棒状试样在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下中轴线的温度分布 Figure6. Simulated central axial temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.
图 7 热模拟中棒状试样中心处4 mm × 4 mm × 4 mm体积元在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下轴向横截面温度分布 Figure7. 4 mm × 4 mm × 4 mm gauge volume simulated axial cross-section temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.
图 8 棒状试样中心处4 mm × 4 mm × 4 mm体积元在(a)椭圆–圆组合反射罩下和(b)椭圆–圆–椭圆组合反射罩下径向横截面温度分布 Figure8. 4 mm × 4 mm × 4 mm gauge volume simulated radial cross-section temperature distribution of screw-threaded sample under (a) ellipse-sphere reflector and (b) ellipse-sphere-ellipse reflector.
椭圆-圆-椭圆组合反射罩结构高温炉温度场热模拟计算同样选取棒状试样中心位置4 mm × 4 mm × 4 mm的体积元. 仅考虑反射罩单一结构优化, 此时试样最高加热温度可达1317 ℃, 设置相同挡板后, 模拟结果如图6(b)、图7(b)和图8(b)所示. 结果表明, 温度差仍控制在5 ℃以内, 最高温度约为1423 ℃. 5.高温炉温度场实验验证为验证模拟计算的准确性, 在Engin-X中子谱仪上完成高温拉伸实验: 直径8 mm因科镍棒状试样, k型热电偶, 空气氛围, 在灯管70%功率下试样最高温度达到860 ℃, 100%功率下最高温度达到1003 ℃. 图9为试样加热阶段实物图展示, 中心和两侧共设有3个热电偶. 用上文中提及的思路, 对现有高温炉进行光线聚焦和温度场的模拟计算, 设置相同参数(含高温炉形状、灯管、反射层、夹具、试样等)后, 得到如图10所示的结果. 可以看出, 70%加热功率下试样最高加热温度可达899 ℃, 100%加热功率下试样最高加热温度可达1048 ℃. 考虑到现有高温炉装置在中子谱仪上已使用10余年, 存在焦点对中略有错位, 反射罩反射层质量略有下降等原因, 所以实验测量值比理论模拟值略低一些, 总体而言实验与模拟结果基本一致, 验证了模拟思路和方法的可行性. 结合上一章节模拟结果分析, 仅考虑反射罩单一结构优化, 椭圆–圆组合反射罩比现有半椭圆反射罩使样品最高加热温度从1048 ℃提高到1291 ℃, 椭圆-圆-椭圆组合反射罩则提高到1317 ℃, 优化结果较为明显. 图 9 高温拉伸实验试样加热阶段实物图 Figure9. Sample heating process in high temperature tensile test
图 10 热模拟中棒状试样在(a) 70%加热功率和(b) 100%加热功率下的温度分布 Figure10. Simulated temperature distribution of screw-threaded sample under (a) 70% heating power and (b) 100% heating power.