Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11504429).
Received Date:28 November 2018
Accepted Date:25 February 2019
Available Online:23 March 2019
Published Online:20 April 2019
Abstract: In order to improve the low-frequency acoustical insulation performance of Helmholtz phononic crystals, a structure coupling Helmholtz resonator with elastic oscillator is designed. This structure combines the characteristics of Helmholtz resonators with those of the local resonant solid-solid phononic crystals. In this structure, the elastic oscillator is bonded to the inner wall of the conventional Helmholtz resonator by rubber. The structure has two bandgaps in the low-frequency range, i.e. 24.5?47.7 Hz and 237.6?308.6 Hz for a lattice constant of 6 cm. However, for the same lattice constant, the lower limit of the bandgap of the traditional Helmholtz resonator without the elastic oscillator structure is only 42.1 Hz. Our structure reduces the minimum lower limit of the bandgap by 40% compared with the traditional Helmholtz structure and has better low-frequency acoustical insulation characteristics. In this study, the generation mechanism of the bandgap is analyzed with the sound pressure field and vibration mode. It is found that the elastic oscillator and the air in the air passage of the resonator vibrate in the same direction at the frequency of upper and lower limit for the first bandgap while they vibrate in the reverse direction for the second bandgap. Outside the resonator, air sound pressure is zero at the lower limit of the bandgap. The spring-oscillator system is established as an equivalent model. In the model, the elastic oscillator and the air in the passage are regarded as oscillators, and the air separated by the elastic oscillator, the air outside the resonator, and the rubber connected with the elastic oscillator are all regarded as springs. Besides, it can be found that the air in the resonator shows different equivalent stiffness for different vibration mode. In the discussion, the effects of structural parameters on the bandgap are studied by theoretical calculation and the finite element method. The results show that when the lattice constant decreases without changing the side length of the resonator, the bandgap width increases without affecting the lower limit of the bandgap. The increase of the length of the air passage can increase the width of the first bandgap while the second bandgap decreases. However, the increase of the mass effect of the elastic oscillator results in the first bandgap width decreasing and the second bandgap width increasing. The increase of the length of the air passage and the mass of the elastic oscillator both can reduce the bandgap frequency. It can be found that the volume of the right cavity only affects the frequency of the second bandgap, while the volume of the left cavity can influence the frequency of each bandgap. Therefore, the shorter distance between the elastic oscillator and the passage, the better low-frequency acoustical insulation performance of the structure can be reached. Finally, the increase of the length of the rubber produces new vibration modes, which leads to the generation of new small bandgaps and the change of the frequency of the original bandgaps. However, it is found that the influence of the mode of vibration on the bandgap is smaller than that of the mass of the elastic oscillator, and the regularity of its impact is not apparent. Keywords:Helmholtz resonance/ low-frequency bandgap/ local resonant/ noise control
将腔体外边长固定为l1 = 60 mm, 腔壁厚度固定为b = 1 mm. 先利用理论计算方法对所选参数取值范围内所有可能组合进行遍历扫描(均以1 mm为间隔), 再利用有限元法进行验证和调整, 分别对Helmholtz腔与弹性振子耦合结构和其对应的传统Helmholtz腔结构进行求解, 其第一带隙下限最低时的参数组合及各参数取值范围如表1所列, 采用的材料参数列于表2, 得出其带隙结构如图2(a)所示.
名称
a/mm
l2/mm
l3/mm
br/mm
hr/mm
bs/mm
振子材料
Helmholtz腔与弹性振子耦合结构带隙下限最低参数
61 [61, 65]
50 [1, 1680]
40 [1, 56]
4 [1, 5]
9 [1, 9]
25 [1, 25]
钢
传统Helmholtz腔结构带隙下限最低参数
61 [61, 65]
848 [1, 1680]
—
—
—
—
—
初始结构参数
65
50
28.5
1
1
1
铝
表1各结构参数组合 Table1.Combination of various structural parameters
图 2 (a) Helmholtz腔与弹性振子耦合结构带隙图; (b) Helmholtz腔结构带隙图 Figure2. (a) Band diagram of the Helmholtz resonator coupled with elastic oscillator structure; (b) band diagram of the Helmholtz resonator structure
材料名称
硅橡胶
环氧树脂
碳
铝
钛
钢
密度/k·m–3
1300
1180
1750
2730
4540
7780
弹性模量/1010 Pa
1.175 × 10–5
0.435
23.01
7.76
11.70
21.06
剪切模量/1010 Pa
4 × 10–6
0.159
8.85
2.87
4.43
8.10
表2各材料参数 Table2.Material parameters
对于传统Helmholtz腔结构, 降低其第一带隙下限主要通过增大开口长度, 由于这样会使得腔体体积减小, 导致其第一带隙下限最低低至42.1 Hz(如图2(b)所示). 而对于Helmholtz腔与弹性振子耦合结构, 其第一、二带隙分别为24.5—47.7 Hz, 237.6—308.6 Hz (如图2(a)所示). 为探究Helmholtz腔与弹性振子耦合情况下的带隙机理, 设置初始结构参数如表1所列. 利用有限单元法得出其带隙结构如图3(a)所示, 从图中可以看出, 该结构在700 Hz以下存在两个带隙, 其中第一带隙为125.34—267.30 Hz, 第二带隙为355.13—397.22 Hz, 各带隙的起止点已在图中标出. 另外, 在179.17 Hz和254.69 Hz处出现了两条平直带. 图 3 (a) Helmholtz腔与弹性振子耦合结构带隙图; (b) Helmholtz腔与弹性振子耦合结构隔声曲线 Figure3. (a) Band diagram of the Helmholtz resonator coupled with elastic oscillator structure; (b) the transmission spectra of the Helmholtz resonator coupled with elastic oscillator structure
3.带隙机理及等效模型Helmholtz腔与弹性振子耦合结构带隙上下限处的声压场如图4所示, 在A点(模态A), 左腔声压最大, 右腔次之, 而腔体外部声压为零. 表明此时振子与开口中空气做同向振动, 而外部空气未参与振动, 声波被局域在腔体内部, 无法向外传播, 由此形成带隙下限. 图 4 (a) A点, (b) B点, (c) C点, (d) D点的声场压力图 Figure4. Sound pressure distribution diagrams of point A (a), B (b), C (c), and D (d).
在B点(模态B), 左腔声压为负值, 右腔及腔体外部声压为正值且外部声压最大. 表明此时振子与开口中空气做同向振动, 且声波可以在腔体外部传播, 由此对应带隙上限. C (模态C), D (模态D)两点处腔体外部声压分别与A, B两点处基本相同, 表明其带隙形成机理是一致的. 但C点处左腔声压为负值而右腔声压最大, 表明此处对应振动模态为振子与开口中空气做相向振动. D点处左右腔声压与B点处相比声压颠倒, 表明此处对应振动模态同样为振子与开口中空气做相向振动. 对于平直带处的振动模态, 通过声压场和弹性振子的振动模态相结合进行分析, 如图5所示. 为便于分析, 在声压场图中添加了等值线. 图 5 (a) 第一平直带弹性振子振型图; (b) 第二平直带弹性振子振型图; (c) 第一平直带声场压力图; (d) 第二平直带声场压力图 Figure5. The vibration mode of the elastic oscillatorat the first straight belt (a) and at the second straight belt (b); the sound pressure distribution diagrams of the first straight belt (c), and the second straight belt (d)
在两平直带处, 弹性振子的振动分别为绕中心转动和沿轴向振动, 虽然这种振动因流-固耦合作用会使得各腔内声场发生变化, 但因振动过程中左右腔体积均不变, 故各腔声场的变化分别是上下反对称的(如图5(c)和图5(d)所示), 其总的等效声压为零. 此时, 弹性振子的振动并不能激发开口处空气的振动, 从而无法将声压传导至腔外, 声波仍然被局域在腔内, 故对该结构的隔声性能没有影响. 这一点也从图3所示的隔声曲线上有所体现, 平直带对应的频率处, 隔声曲线没有特别的变化特征. 对于局域共振型声子晶体, 由于带隙上下限共振机理不同, 其等效模型一般通过弹簧-振子模型[21,22]或声电类比模型[14,15]对带隙上下限分别进行构建. 在本研究中, 选用弹簧-振子模型. 首先做如下假设: 1)对于开口处, 由于其体积相比内腔小得多, 且开口宽度较小, 假设开口内空气做同步运动且不计其受到的压缩, 即视为振子, 其等效质量由m2表示; 2)对于左右腔及外部空气, 忽略其振动造成的惯性力, 即视为无质量弹簧, 其等效刚度分别由k4, k2, k1表示; 3)对于弹性振子, 忽略其振动时的挠度变形, 将其视为刚性振子(在仿真时仍设定为弹性体), 并将两端橡胶质量通过集中参数法等效分布于振子和腔壁上, 其等效质量由m1表示; 4)对于弹性振子两边的橡胶, 将其考虑为受剪切变形影响的横向振动无质量伯努利-欧拉梁, 忽略自身振型的影响, 在模型中用等效刚度为k3的弹簧拟合其特性. 综上, 对该结构各带隙起止点建立等效模型如图6所示, 其中图6(a)对应带隙上限, 图6(b)对应带隙下限, 这两种等效模型的区别在于是否存在外部空气等效所得的弹簧k1, 这种不同来源于对开口处空气的简化. 开口空气实际相当于一纵向振动弹性杆, 这与图4中其声压场逐渐变化相对应. 该结构更为精确的模型为“弹簧-质量块-弹簧-弹性杆-弹簧”. 但在k1, k2较小且开口长度适中的情况下, 可通过假设1)的处理, 仅考虑开口空气质心的振动位移, 此时在带隙上限处将弹性杆视为质量块即可. 但在带隙下限处, 外部空气声压始终为零, 即系统在振动过程中, 开口空气杆的外端始终静止, 无法体现弹簧k1的作用, 但杆的质心仍在振动, 故可简化为图6(b)所示的等效模型. 图 6 (a) 模态B, D的等效模型; (b) 模态A, C的等效模型 Figure6. (a) The equivalent model of modal B and D; (b) the equivalent model of modal A and C