Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11674038, 61704011, 61674021, 61574022), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20160204074GX, 20160519007JH, 20160101255JC), and the Science and Technology Innovation Fund of Changchun University of Science and Technology, China (Grant Nos. XJJLG-2016-11, XJJLG-2016-14).
Received Date:30 November 2018
Accepted Date:25 February 2019
Available Online:01 April 2019
Published Online:20 April 2019
Abstract:Gallium arsenide (GaAs) nanowires are epitaxially grown on an N-type Si (111) substrate by molecular beam epitaxy according to self-catalysis growth mechanism. Testing the grown nanowires by scanning electron microscope, it is found that the nanowires have high verticality and good uniformity in length and diameter. Variable temperature photoluminescence (PL) spectroscopy is used on nanowires. The test results show that the two luminescence peaks P1 and P2 at 10 K are located at 1.493 eV and 1.516 eV, respectively, and it is inferred that it may be the luminescence caused by WZ/ZB miscible structure and the free exciton luminescence peak. These two peaks present red-shift with temperature increasing. The temperature change curve is obtained by fitting the Varshni formula. The variable power PL spectroscopy test finds that the peak position of P1 position is blue shifted with power increasing, but the peak position of the P2 remains unchanged. By fitting, it is found that the P1 peak position is linearly related to power to the power of 1/3, and it is judged that it may be type-II luminescence caused by WZ/ZB mixed phase structure. At the same time, the peak position of the P2 position is fitted and parameter α approximately equals 1.56, therefore P2 is a free exciton luminescence. A Raman spectrum test is performed on the nanowires, and an E2 phonon peak unique to the GaAs WZ structure is found from the spectrum. It is proved that the grown nanowires possess WZ/ZB mixed phase structures, and the hybrid phase structure of nanowires is more intuitively observed by high resolution transmission electron microscopy. Keywords:GaAs nanowires/ wurtzite/zincblende mixed phase structure/ photoluminescence spectra/ Raman spectra
全文HTML
--> --> -->
3.结果与讨论图1为生长的GaAs纳米线SEM图像以及纳米线长度直径分布情况. 图1(a)为GaAs纳米线SEM侧视图, 可以看出绝大多数纳米线长度及直径分布均匀, 且直立性良好. 图1(c)为GaAs纳米线平面SEM图像, 通过对图上纳米线数量进行测量, 计算出纳米线的密度超过1 × 109 cm–2, 纳米线的垂直度超过90%, 并且可以看出纳米线分布均匀. 图1(c)插图为纳米线形状, 可以看出生长出的GaAs纳米线为正六边形, 说明生长出的纳米线结晶质量较好. 图1(b)和图1(d)为GaAs纳米线的长度及直径分布图, 通过测量, 大多数纳米线直径在60 nm左右, 长度为2 ${\text{μ}}{\rm m}$左右, 并且纳米线直径、长度分布呈现高斯曲线分布. 图 1 GaAs纳米线形貌及纳米线长度直径分布 (a) GaAs纳米线侧面SEM图像; (b) GaAs纳米线长度分布统计图; (c) GaAs纳米线平面SEM图像, 插图为纳米线形状; (d) GaAs纳米线直径分布统计图 Figure1. The morphology, length, and diameter distribution of GaAs nanowires: (a) Side SEM image of GaAs nanowires; (b) GaAs nanowires length distribution; (c) plane SEM image of GaAs nanowires, inset is the shape of the nanowire; (d) GaAs nanowires diameter distribution
为了更好地了解样品的发光特性, 对均匀的GaAs纳米线进行了PL光谱测试, 其测试结果如图2所示, 10 K下出现两个发光峰, 对应的峰位为1.493 eV和1.516 eV, 分别被标记为P1, P2. 根据相关文献报道, P2相对应的发光峰来源于与GaAs相关的自由激子峰[28], 但是P1对应的峰较为复杂, 可能来源于多个方面的因素. 根据相关文献报道在1.493 eV左右发光峰有可能是由C受主所引起的[27], 也有文献报道由于Mg受主所引起的[28], 还有可能是由于WZ/ZB混相所引起[15, 16-29]. 我们使用高真空度的MBE系统进行GaAs纳米线外延生长, 在生长前后对真空室的气体成分进行干扰排除, 并没有在真空室中发现存在C和Mg这两种元素, 同时, 生长腔并没有附带这两种源炉, 因此可以排除生长过程中非故意引进的受主杂质. 而生长过后我们通过真空包装, 几乎不与空气接触, 因此不会受到空气中其他物质的污染, 并且在相同衬底不同条件下生长出的纳米线, 并没有出现P1峰, 排除了衬底缺陷而导致P1峰出现的可能性. 由此我们可以初步判断P1位置的发光峰可能是由GaAs纳米线WZ/ZB混相结构引起的. 图 2 GaAs纳米线变温PL光谱测试图 (a)发光峰位随温度10?140 K的变化; (b) P1, P2发光峰峰位随温度变化的拟合曲线 Figure2. Variable power PL spectrum: (a) The change of luminescence peak position with temperature 10?140 K; (b) fitting curve of the peak position of P1 and P2 luminescence with the change of temperature