1.Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China 2.School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
Fund Project:Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530260), the National Natural Science Foundation of China (Grant No. 51776037), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180405).
Received Date:19 October 2018
Accepted Date:05 December 2018
Available Online:01 March 2019
Published Online:05 March 2019
Abstract:A scheme of passive breakup of generated droplet into two daughter droplets in a microfluidic Y-junction is characterized by the precisely controlling the droplet size distribution. Compared with the T-junction, the microfluidic Y-junction is very convenient for droplet breakup and successfully applied to double emulsion breakup. Therefore, it is of theoretical significance and engineering value for fully understanding the double emulsion breakup in a Y-junction. However, current research mainly focuses on the breakup of single phase droplet in the Y-junction. In addition, due to structural complexity, especially the existence of the inner droplet, more complicated hydrodynamics and interface topologies are involved in the double emulsion breakup in a Y-junction than the scenario of the common single phase droplet. For these reasons, an unsteady model of a double emulsion passing through microfluidic Y-junction is developed based on the volume of fluid method and numerically analyzed to investigate the dynamic behavior of double emulsion passing through a microfluidic Y-junction. The detailed hydrodynamic information about the breakup and non-breakup is presented, together with the quantitative evolutions of driving and resistance force as well as the droplet deformation characteristics, which reveals the hydrodynamics underlying the double emulsion breakup. The results indicate that the three flow regimes are observed when double emulsion passes through a microfluidic Y-junction: obstructed breakup, tunnel breakup and non-breakup; as the capillary number or initial length of the double emulsion decreases, the flow regime transforms from tunnel breakup to non-breakup; the upstream pressure and the Laplace pressure difference between the forefront and rear droplet interfaces, which exhibit a correspondence relationship, are regarded as the main driving force and the resistance to double emulsion breakup through a microfluidic Y-junction; the appearance of tunnels affects the double emulsion deformation, resulting in the slower squeezing speed and elongation speed of outer droplet as well as the slower squeezing speed of inner droplet; the critical threshold between breakup and non-breakup is approximately expressed as a power-law formula ${l^*} = \beta C{a^b}$, while the threshold between tunnel breakup and obstructed breakup is approximately expressed as a linear formula ${l^*} = \alpha $; comparing with the phase diagram for single phase droplet, the coefficients $\alpha $ and $\beta $ of the boundary lines between the different regimes in phase diagram for double emulsion are both increased. Keywords:Y-junction/ double emulsion/ breakup/ volume of fluid method
为验证本文所建立的数学模型的正确性, 依据文献[41]中的实验, 基于上文的二维数学模型数值模拟了如图4所示的剪切流场中双重乳液形变, 并且与实验结果进行了比对. 模拟中内、中、外三相流体分别为去离子水(20 ℃下${\mu _{\rm{i}}}$ = 0.001 Pa·s, ${\rho _{\rm{i}}}=$ 998 kg/m3)、Ucon润滑油(20 ℃下${\mu _{\rm{m}}}$ = 0.125 Pa·s, ${\rho _{\rm{m}}}$ = 991 kg/m3)和不同分子量的硅油混合物(20 ℃下${\mu _{\rm{o}}}$ = 5.2 Pa·s, ${\rho _{\rm{o}}}$ = 989 kg/m3). 表面张力系数${\sigma _{\rm{o}}}$ = 0.024 N/m, ${\sigma _{\rm{i}}}$ = 0.003 N/m. 计算区域的几何尺寸为W × H = 20Ro × 8Ro, Ro为外液滴半径. 如图5所示, 对于双重乳液的形貌和内、外液滴的Taylor[46]稳态形变参数D(Di = (Li – Bi)/(Li + Bi), Do = (Lo – Bo)/(Lo + Bo)), 数值模拟结果与实验结果吻合较好, 这表明本文的数学模型能有效地预测Y型微通道内双重乳液的形变. 图 4 剪切流场下双重乳液形变研究示意图 (a) 计算区域示意图; (b) 双重乳液形变参数示意图 Figure4. Schematic of deformed double emulsion in steady shear flow: (a) Schematic of computational domain; (b) schematics of deformation parameters of the inner and outer droplets, respectively.
图 5 模拟结果与实验结果[41]对比 (a) 双重乳液的形变参数D随Ca的变化; (b) 双重乳液形貌对比 Figure5. Comparison of steady deformation of double emulsion between simulation and experiment[41]: (a) Steady deformation of double emulsion in the function of Ca; (b) comparison of droplet morphology reconstructed from numerical simulation with experimental snapshots.
-->
3.1.阻塞破裂
当双重乳液流经Y型分叉处时, 上游压力驱动双重乳液形变, 此时双重乳液前端以及尾部界面形貌发生变化(图6(a)), 而双重乳液界面张力将阻碍该过程的发生, 该过程中速度场演化如图6(b)所示. 为阐明上游驱动压力以及双重乳液界面张力之间相互关系, 图6—8分别给出了阻塞破裂工况中流场整体压力分布情况、双重乳液界面张力以及上游压力瞬时演化曲线. 如图6(a)所示, 可将双重乳液流经Y型分叉处分为三个阶段: entering阶段、squeezing阶段以及post-breakup阶段. 图 6 阻塞破裂工况Y型微通道中压力场与相界面演化(Ca = 0.01, Voi = 1.3, l* = 2.1) Figure6. Evolution of the interface profile and pressure field during obstructed breakup in a Y-junction (Ca = 0.01, Voi = 1.3, l* = 2.1).
图 8 阻塞破裂工况入口与出口压力演化情况(Ca = 0.01, Voi = 1.3, l* = 2.1) Figure8. Evolution of the inlet pressure and outlet pressure of the Y-junction for obstructed breakup (Ca = 0.01, Voi = 1.3, l* = 2.1).
阻塞破裂工况中的entering阶段(图6(a)中$t_{{\rm{OB}}1}^* $—$t_{{\rm{OB}}3}^* $时间段)定义为从双重乳液前端离开主通道进入分叉子通道开始, 到乳液前端接触Y型分叉尖角时刻为止. 在阻塞破裂工况entering阶段中, 双重乳液前端进入主通道与分叉子通道连接处, 该过渡空间中的通道宽度逐渐增加, 双重乳液受限程度降低. 此时, 双重乳液前端界面在前进过程中其曲面半径逐渐增大, 即前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$逐渐减小(见图7(a)中$t_{{\rm{OB}}1}^* $—$t_{{\rm{OB}}3}^* $时间段). 双重乳液前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$方向与流向相反, 并且阻碍双重乳液形变, 因此$\Delta {p_{\sigma ,{\rm{front}}}}$减小意味着流阻减小. 在阻塞破裂工况entering阶段中, 双重乳液尾部一直处于主通道中, 界面形貌没有变化, 故其界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$维持不变(见图7(b)中$t_{{\rm{OB}}1}^* - t_{{\rm{OB}}3}^*$时间段). 双重乳液尾部界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$方向沿主流方向, 即$\Delta {p_{\sigma ,{\rm{tail}}}}$增加意味着流阻减小. 图7(c)给出了$\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$的演化曲线以定量描述双重乳液流动所受的阻碍作用. 在阻塞破裂工况entering阶段中, $\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$呈下降趋势, 在$t_{{\rm{OB}}3}^*$时刻到达最低点. 这与图8上游压力pinlet演化规律一致, 且在该阶段中, $\Delta {p_{\sigma ,{\rm{front}}}} - $$\Delta {p_{\sigma ,{\rm{tail}}}} $与pinlet下降压差均为60 Pa. 图 7 阻塞破裂工况乳液前端及尾部界面张力演化情况(Ca = 0.01, Voi = 1.3, l* = 2.1) (a) 乳液前端界面张力; (b) 乳液尾部界面张力; (c) 乳液前端与尾部界面张力之差; (d) 特征时刻乳液前端与尾部界面张力的示意图 Figure7. Evolution of the pressure for obstructed breakup (Ca = 0.01, Voi = 1.3, l* = 2.1): (a) The Laplace pressure of the forefront droplet interface; (b) the Laplace pressure of the rear droplet interface; (c) the Laplace pressure difference between the forefront and rear droplet interfaces; (d) schematics of $\Delta {p_{\sigma ,{\rm{front}}}}$ and $\Delta {p_{\sigma ,{\rm{tail}}}}$ at different times.
进入squeezing阶段(图6(a)中$t_{{\rm{OB}}3}^* $—$ t_{{\rm{OB}}5}^*$时间段), 双重乳液前端分别进入两个子通道. 在开始阶段(图6(a)中$t_{{\rm{OB}}3}^*$—$t_{{\rm{OB}}5}^* $时间段), 前端界面曲面半径逐渐减小, 前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$增大(图7(a)中$t_{{\rm{OB}}3}^* $—$t_{{\rm{OB}}5}^* $时间段). 此后, 由于双重乳液阻塞子通道, 前端界面曲面半径约等于子通道半径, 故$\Delta {p_{\sigma ,{\rm{front}}}}$维持不变(图7(a)中$t_{{\rm{OB}}5}^*$—$ t_{{\rm{OB}}8}^* $时间段). 双重乳液尾部在该阶段先进入主通道与分叉子通道的连接处, 然后随着阻塞破裂过程发展, 尾部界面一分为二, 完全进入子通道. 在进入过渡区域的初始阶段(图7(b)中$t_{{\rm{OB}}4}^* $—$t_{{\rm{OB}}5}^* $时间段), 尾部界面在前进过程中其曲面半径迅速增加, 界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$陡降. 此后, 在$t_{{\rm{OB}}5}^*$—$ t_{{\rm{OB}}7}^* $时间段, 尾部界面沿着渐扩通道贴近壁面前进, 该过程中的尾部界面曲面半径缓慢增加, 界面张力$\Delta {p_{\sigma {\rm{tail}}}}$逐渐减小. 当尾部界面接近分叉尖角, 如$t_{{\rm{OB}}7}^*$时刻, 乳液尾部近乎完全进入子通道, 但此时双重乳液还未完全破裂, 特别是乳液尾部在子通道中拉伸, 界面趋于平直, 因此界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$在$t_{{\rm{OB}}7}^*$—$t_{{\rm{OB}}8}^* $时间段迅速下降趋向0 Pa. 结合$\Delta {p_{\sigma ,{\rm{front}}}}$和$\Delta {p_{\sigma ,{\rm{tail}}}}$演化规律, 纵观squeezing阶段, 流动受阻参数的$\Delta {p_{\sigma ,{\rm{front}}}} - $$\Delta {p_{\sigma ,{\rm{tail}}}}$先增大至$t_{{\rm{OB}}5}^*$时刻, 随后缓慢增加至$t_{{\rm{OB}}7}^*$时刻, 最后阶段出现阶跃变化, 该阶段中, $\Delta {p_{\sigma ,{\rm{front}}}}- $$\Delta {p_{\sigma ,{\rm{tail}}}}$增加压力324 Pa. 其演化曲线与图8上游压力pinlet演化规律一致, 且该阶段中, $ \Delta {p_{\sigma ,{\rm{front}}}} - $$\Delta {p_{\sigma ,{\rm{tail}}}}$与pinlet上升压差为369 Pa, 两者变化数值接近. 综上所述, 阻塞破裂工况中上游压力pinlet与乳液两端界面张力差$\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$正相关. 当双重乳液完全破裂, 进入post-breakup阶段, 双重乳液尾部回缩, 界面曲面半径减小, 尾部界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$增加, 从而流阻减小, 上游压力pinlet相应降低. 该预测与图8中pinlet变化规律相一致. 为深入理解双重乳液破裂的机理, 采用无量纲特征参数定量描述squeezing阶段中双重乳液形貌(包括内液滴以及外液滴)的演化过程(见图9), 分别为外液滴颈部厚度$\delta _{{\rm{out}}}^*$、外液滴前端运动距离$\Delta l_{{\rm{out}}}^*$、内液滴颈部厚度$\delta _{{\rm{in}}}^*$和内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$. $t_{{\rm{out}},0}^{\rm{*}}$以及$t_{{\rm{in}},0}^{\rm{*}}$分别代表外液滴和内液滴前端接触分叉尖角的时刻, 而$\delta _{{\rm{out}},0}^{\rm{*}}$和$\delta _{{\rm{in}},0}^{\rm{*}}$分别为所对应时刻的外液滴和内液滴颈部厚度. 如图9(a)所示, 外液滴颈部厚度随时间减小直至双重乳液破裂, 插图中给出了$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$和${t^*} - t_{{\rm{out}},0}^{\rm{*}}$的对数坐标图. 根据指数标度律可判定squeezing阶段包含两个子过程. 子过程I中$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$和${t^*} - t_{{\rm{out}},0}^{\rm{*}}$呈线性关系, 而在子过程II中两者呈指数关系$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$ ~ (${t^*} - t_{{\rm{out}},0}^{\rm{*}}$)4/5, 这与T型微通道中液滴阻塞破裂的特性类似[23]. 两个子过程中颈部厚度随时间的变化规律不同, 这主要是由于外液滴尾部界面张力发生了改变. 与颈部厚度变化不同的是, 外液滴前端运动距离随时间线性增加, 有$\Delta l_{{\rm{out}}}^*$ ≈ $ 2/3({t^*} - $$ t_{{\rm{out}},0}^{\rm{*}})$ (见图9(b)). 此时, 外液滴前端以2u0/3恒定速度运动, 这主要由于该工况中子通道完全被外液滴阻塞所导致. 图9(c)和图9(d)分别给出了内液滴颈部厚度$\delta _{{\rm{in}}}^*$和内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$随时间的演化曲线, 其演化特性与外液滴一致. 内液滴颈部厚度随时间缩小, 也分为两个子过程, $\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$和${t^*} - t_{{\rm{in}},0}^{\rm{*}}$分别呈线性关系和指数关系$\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$ ~ (${t^*} - t_{{\rm{in}},0}^{\rm{*}}$)4/5; 内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$也随时间线性增加, 有$\Delta l_{{\rm{in}}}^*$ ≈ 0.7(${t^*} - t_{{\rm{in}},0}^{\rm{*}}$). 此时, 内液滴前端以0.7u0匀速前进. 图 9 双重乳液无量纲特征参数在squeezing阶段内演化情况 (Ca = 0.01, Voi = 1.3, l* = 2.1) (a)外液滴颈部厚度$\delta _{{\rm{out}}}^*$, 插图中给出了$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$与${t^*} - t_{{\rm{out}},0}^{\rm{*}}$的对数坐标图; (b) 外液滴前端运动距离$\Delta l_{{\rm{out}}}^*$, 插图中给出了$\Delta l_{{\rm{out}}}^*$与${t^*} - t_{{\rm{out}},0}^{\rm{*}}$的对数坐标图; (c) 内液滴颈部厚度$\delta _{{\rm{in}}}^*$, 插图中给出了$\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$与${t^*} - t_{{\rm{in}},0}^{\rm{*}}$的对数坐标图; (d) 内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$, 插图中给出了$\Delta l_{{\rm{in}}}^*$与${t^*} - t_{{\rm{in}},0}^{\rm{*}}$的对数坐标图 Figure9. Evolution of the dimensionless characteristic parameters in the squeezing stage for obstructed breakup (Ca = 0.01, Voi = 1.3, l* = 2.1): (a)The neck thickness of outer droplet $\delta _{{\rm{out}}}^*$, inset is the same data as log($\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$) versus log(${t^*} - t_{{\rm{out}},0}^{\rm{*}}$); (b) the distance travelled by the tip of outer droplet $\Delta l_{{\rm{out}}}^*$, the same data as log($\Delta l_{{\rm{out}}}^*$) versus log(${t^*} - t_{{\rm{out}},0}^{\rm{*}}$); (c) the neck thickness of inner droplet $\delta _{{\rm{in}}}^*$, inset is the same data as log($\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$) versus log(${t^*} - t_{{\rm{in}},0}^{\rm{*}}$); (b) the distance travelled by the tip of inner droplet $\Delta l_{{\rm{in}}}^*$, the same data as log($\Delta l_{{\rm{in}}}^*$) versus log(${t^*} - t_{{\rm{in}},0}^{\rm{*}}$).
23.2.隧道破裂 -->
3.2.隧道破裂
从流动行为角度分析, 隧道破裂流型在entering和post-breakup阶段与阻塞破裂流型非常类似, 但在squeezing阶段两者有明显区别(见图10). 在squeezing阶段$t_{\rm {TB4}}^* $时刻, 隧道破裂流型中乳液与子通道壁面间开始出现两条隧道. 从压力演化角度分析, 隧道破裂流型在entering和squeezing阶段均展现出一定的不同(见图11和图12). 图 10 隧道破裂工况Y型微通道中压力场与相界面演化(Ca = 0.01, Voi = 1.3, l* = 1.3) Figure10. Evolution of the interface profile and pressure field during tunnel breakup in a Y-junction (Ca = 0.01, Voi = 1.3, l* = 1.3).
图 11 隧道破裂工况乳液前端及尾部界面张力演化情况 (Ca = 0.01, Voi = 1.3, l* = 1.3) (a) 乳液前端界面张力; (b) 乳液尾部界面张力; (c) 乳液前端与尾部界面张力之差 Figure11. Evolution of the pressure for tunnel breakup (Ca = 0.01, Voi = 1.3, l* = 1.3): (a) The Laplace pressure of the forefront droplet interface; (b) the Laplace pressure of the rear droplet interface; (c) the Laplace pressure difference between the forefront and rear droplet interfaces.
图 12 隧道破裂工况入口与出口压力演化情况 (Ca = 0.01, Voi = 1.3, l* = 1.3) Figure12. Evolution of the inlet pressure and outlet pressure of the Y-junction for tunnel breakup (Ca = 0.01, Voi = 1.3, l* = 1.3).
在entering阶段(图10(a)中$t_{{\rm{TB}}1}^* $—$ t_{{\rm{TB}}3}^*$时间段), 当双重乳液前端开始进入渐扩过渡通道时, 由于其受限程度降低, 双重乳液前端界面在前进过程中其曲面半径逐渐增大, 即前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$逐渐减小(见图11(a)中$t_{{\rm{TB}}1}^* $—$t_{{\rm{TB}}2}^* $时间段). 值得注意的是, 由于该工况中双重乳液长度较短, 在entering阶段, 双重乳液尾部已离开主通道进入渐扩过渡通道(图11(b)中$t_{{\rm{TB}}2}^* $—$t_{{\rm{TB}}3}^* $时间段), 在前进过程中尾部界面曲面半径迅速增加, 界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$陡降, 在$t_{{\rm{TB}}3}^*$时刻变化趋于平缓. 因此, 不同于阻塞破裂工况, 在隧道破裂entering阶段, $\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$先下降后上升, 在$t_{{\rm{TB}}2}^*$时刻为最低点(见图11(c)$t_{{\rm{TB}}1}^* $—$t_{{\rm{TB}}3}^* $时间段), 这与图12上游压力pinlet演化规律一致. 在该阶段中, $\Delta {p_{\sigma ,{\rm{front}}}} - $$ \Delta {p_{\sigma ,{\rm{tail}}}}$先下降37 Pa后上升70 Pa, 而pinlet先下降24 Pa后上升37 Pa. 两者之间略有差异, 这可能是由于在隧道破裂工况中, 双重乳液并不完全阻塞渐扩过渡通道(见图10(a)$t_{{\rm{TB}}3}^*$时刻). 在entering阶段, 隧道破裂流型速度场与阻塞破裂流型非常类似, 如图10(b)所示. 进入squeezing阶段(图10(a)中$t_{{\rm{TB}}3}^* $—$t_{{\rm{TB}}5}^* $时间段), 双重乳液前端分别进入两个子通道. 在开始阶段(图10(a)中$t_{{\rm{TB}}3}^* $—$t_{{\rm{TB}}4}^*$时间段), 前端界面曲面半径逐渐减小, 前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$迅速增大(图11(a)中$t_{{\rm{TB}}3}^* $—$t_{{\rm{TB}}5}^* $时间段). 此后不同于阻塞破裂工况, 由于隧道的存在, 双重乳液在拉伸破裂过程中隧道宽度增加, 双重乳液前端半径会继续减小. 因此, 从$t_{{\rm{TB}}4}^*$时刻开始, 前端界面张力$\Delta {p_{\sigma ,{\rm{front}}}}$仍会增大, 其增速有所降低, 略为平缓(图11(a)中$t_{{\rm{TB}}4}^*$—$t_{{\rm{TB}}7}^* $时间段). 在squeezing阶段, 双重乳液尾部继续在渐扩过渡通道中前进, 直至尾部界面在分叉尖角处破裂, 尾部界面曲线在该过程中基本保持不变, 界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$略有下降(图11(b)中$t_{{\rm{TB}}3}^*$—$t_{{\rm{TB}}7}^* $时间段). 值得注意的是, 由于当尾部界面接近分叉尖角时, 隧道的存在使得尾部界面仍然保持一定弧度, 没有被拉伸趋于平直. 因此, 在隧道破裂工况squeezing阶段的最后时刻, $\Delta {p_{\sigma ,{\rm{tail}}}}$没有出现陡降现象, 只是略有下降. 在squeezing阶段, 隧道破裂流型由于隧道的出现, 连续相流体从隧道流过, 此时隧道处速度明显增大, 如图10(b)所示. 结合$\Delta {p_{\sigma ,{\rm{front}}}}$和$\Delta {p_{\sigma ,{\rm{tail}}}}$的演化规律, 在隧道破裂工况squeezing阶段, $\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$先迅速上升至$t_{{\rm{TB}}4}^*$时刻, 随后上升速度略有放缓, 在最后阶段增加速率略有加快. 该阶段$\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$增加了227 Pa. 由图12可知, $\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$演化曲线与上游压力pinlet演化规律基本一致, 在该阶段, pinlet上升压差为305 Pa, 大于$\Delta {p_{\sigma ,{\rm{front}}}} - $$\Delta {p_{\sigma ,{\rm{tail}}}}$变化数值. 两者出现差异的原因在$t_{{\rm{TB}}3}^*$—$ t_{{\rm{TB}}5}^*$阶段, 可以发现pinlet演化曲线从$t_{{\rm{TB}}3}^*$时刻开始以较高速率上升, 且没有在$t_{{\rm{TB}}4}^*$时刻减缓, 一直维持到$t_{{\rm{TB}}5}^*$时刻. 这是由于在$t_{{\rm{TB}}4}^* - t_{{\rm{TB}}5}^*$阶段, 双重乳液内液滴被挤压变形, 外液滴界面逐渐接近内液滴, 这使得外液滴尾部内侧压力上升, 这对其变形起到了阻碍作用. 在阻塞破裂工况中, squeezing阶段pinlet上升压差也高过$\Delta {p_{\sigma ,{\rm{front}}}} - \Delta {p_{\sigma ,{\rm{tail}}}}$的变化45 Pa, 由于在阻塞破裂工况中内外液滴距离较大, 因此相互作用影响程度小于隧道破裂工况. 与阻塞破裂类似, 进入post-breakup阶段, 双重乳液将完全破裂, 其尾部回缩, 界面曲面半径减小, 尾部界面张力$\Delta {p_{\sigma ,{\rm{tail}}}}$增加, 流阻减小, 上游压力pinlet相应降低(图11(b)中$t_{{\rm{TB}}3}^*$—$t_{{\rm{TB}}7}^* $时间段). 为深入探究“隧道效应”对双重乳液破裂行为的影响, 图13给出了隧道破裂工况中典型几何参数(包括外液滴颈部厚度$\delta _{{\rm{out}}}^*$、外液滴前端运动距离$\Delta l_{{\rm{out}}}^*$、内液滴颈部厚度$\delta _{{\rm{in}}}^*$和内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$)在squeezing阶段随时间演化的情况. 与阻塞破裂类似, $\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$随时间演化分为两个子过程, 子过程I中$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$和${t^*} - t_{{\rm{out}},0}^{\rm{*}}$呈线性关系, 而在子过程II中两者呈指数关系(见图13(a)插图). 不同之处在于, 子过程II的指数约为3.75/5, 小于阻塞破裂的4/5. 这表明隧道的出现使得双重乳液外液滴颈部收缩速率降低, 这也间接说明隧道内润滑流动引起的剪切作用并没促进外液滴的挤压形变. 图13(b)给出了外液滴前端运动距离随时间的演化曲线, 如图所示, 在隧道破裂流型中, $\Delta l_{{\rm{out}}}^*$演化趋势前期为线性变化, 随后变为指数变化, 指数为4/5. 这表明隧道的出现也降低了外液滴沿流向的拉伸速率. 图 13 隧道破裂工况双重乳液无量纲特征参数在squeezing 阶段内演化情况 (Ca = 0.01, Voi = 1.3, l* = 1.3) (a) 外液滴颈部厚度$\delta _{{\rm{out}}}^*$, 插图中给出了$\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$与${t^*} - t_{{\rm{out}},0}^{\rm{*}}$的对数坐标图; (b) 外液滴前端运动距离$\Delta l_{{\rm{out}}}^*$, 插图中给出了$\Delta l_{{\rm{out}}}^*$与${t^*} - t_{{\rm{out}},0}^{\rm{*}}$的对数坐标图; (c) 内液滴颈部厚度$\delta _{{\rm{in}}}^*$, 插图中给出了$\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$与${t^*} - t_{{\rm{in}},0}^{\rm{*}}$的对数坐标图; (d) 内液滴前端运动距离$\Delta l_{{\rm{in}}}^*$, 插图中给出了$\Delta l_{{\rm{in}}}^*$与${t^*} - t_{{\rm{in}},0}^{\rm{*}}$的对数坐标图 Figure13. Evolution of the dimensionless characteristic parameters in the squeezing stage for tunnel breakup (Ca = 0.01, Voi = 1.3, l* = 1.3): (a) The neck thickness of outer droplet $\delta _{{\rm{out}}}^*$, inset is the same data as log($\delta _{{\rm{out}},0}^{\rm{*}} - \delta _{{\rm{out}}}^*$) versus log(${t^*} - t_{{\rm{out}},0}^{\rm{*}}$); (b) the distance travelled by the tip of outer droplet $\Delta l_{{\rm{out}}}^*$, the same data as log($\Delta l_{{\rm{out}}}^*$) versus log(${t^*} - t_{{\rm{out}},0}^{\rm{*}}$); (c) the neck thickness of inner droplet $\delta _{{\rm{in}}}^*$, inset is the same data as log($\delta _{{\rm{in}},0}^{\rm{*}} - \delta _{{\rm{in}}}^*$) versus log(${t^*} - t_{{\rm{in}},0}^{\rm{*}}$); (b) the distance travelled by the tip of inner droplet $\Delta l_{{\rm{out}}}^*$, the same data as log($\Delta l_{{\rm{in}}}^*$) versus log(${t^*} - t_{{\rm{in}},0}^{\rm{*}}$).