First-principles study of structure, electronic structure and thermoelectric properties for Co2-based Heusler alloys Co2FeAl1–xSix (x = 0.25, x = 0.5, x = 0.75)
Fund Project:Project supported by the National Natural Science Foundation (Grant No. 61671199), the China Postdoctoral Foundation (Grant No. 61671199), Hebei Provincial Postdoctoral Special Foundation (Grant No. 2016M601243), and the National Chunhui Plan (Grant No. Z2017024).
Received Date:03 September 2018
Accepted Date:24 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:In the recent decades, the half-metallic materials have become a research hotspot because of their unique electronic structure. The 100% spin polarization at the Fermi level makes them widely used in spintronic devices. The Co-based Heusler alloys belong to an important class of magnetic material, and Co2FeAl and Co2FeSi have been experimentally confirmed to be half-metallic materials with 100% spin polarization at the Fermi level, and the Co2FeSi has a high Curie temperature of 1100 K and a large magnetic moment of 6.0 ${{\text{μ}}{\rm{B}}}$, which is a good candidate for spintronic devices. We here choose and substitute Al atoms in Co2FeAl with Si atoms, and then carry out the theoretical predictions of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) for both bulk and film . In this paper, using the first principles calculations based on the density functional theory (DFT) we study the electronic structure, tetragonal distortion, elastic constants, phonon spectrum and thermoelectric properties of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys. The calculation results show that the electronic structure of Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys are all half-metallic with 100% spin polarization, and the down spin states (semiconducting character) all exhibit good thermoelectric properties, and the power factor increases with the substitution concentration of Si atoms increasing. The calculated phonon spectrum does not have virtual frequency, indicating its dynamic stability, and all cubic phases fulfill the mechanical stability criteria, i.e. Born criteria: C11 > 0, C44 > 0, C11–C12 > 0, C11 + 2C12 > 0, and C12 < B < C11. With the variation of lattice constant ratio c/a, the lowest energy point of the structure for Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloys are all at c/a = 1, showing that the stability of the structure does not change with the variation of distortion c/a, and further the martensitic transformation cannot occur. For the Co2FeAl1–xSix (x = 0.25, 0.5, 0.75) series alloy thin films, the calculated electronic structures all show a high spin polarization, and it reaches 100% at x = 0.75, and for x = 0.75, the lowest energy point of the structure is at c/a = 1.2, suggesting the martensitic transformation in this structure. With the variation of the tetragonal distortion, the total magnetic moment also changes and it is mainly determined by the changes of atomic magnetic moment of transition-metals Fe and Co. Keywords:half-metallic/ first principles/ electronic structure/ magnetism
表1Co2FeAl1-xSix合金在x = 0.25, 0.5, 0.75时的晶格参数及磁矩 Table1.Lattice parameters and magnetic moments of Co2FeAl1-xSix alloys at x = 0.25, 0.5 and 0.75.
图 2 Co2FeAl1-xSix合金在铁磁态(FM)和反铁磁态(AFM)下的晶格常数优化曲线 (a) x = 0.25; (b) x = 0.5; (c) x = 0.75 Figure2. Optimization curves of lattice constant for Co2FeAl1-xSix alloy under ferromagnetic and antiferromagnetic magnetic order.
热电材料种类很多, 如Bi2Te3, PbTe, SiGe, GeTe及half-Heusler合金等. 迄今为止, 发现的已有100多种[35], 其中half-Heusler合金是一类重要的中温区热电材料(500—800 K), 由于Heusler合金在结构上与half-Heusler合金非常相近, 因此近年来其热电性能也引起了广泛关注[36,37]. 我们采用弛豫时间近似的玻尔兹曼输运理论分别计算了Co2FeAl1–xSix系列合金在100, 300, 500, 900和1200 K温度下的热电输运特性, 由于本系列合金没有相关热电数据报道, 因此, 弛豫时间采取拟合与本体系接近的Co2FeSi的电导率实验数据得到[38], 拟合的弛豫时间结果为1.3 × 10–14 s. 计算的输运特性如图5(a)—(i)所示. 图5(a), (e)和(i)分别为Co2FeAl1–xSix在掺杂浓度x为0.25, 0.5和0.75下的向下自旋态(半导体特性)的Seebeck系数随化学势的变化. 如图所示, 分别在化学势正值区域(电子掺杂)和负值区域(空穴掺杂)出现峰值, 且峰值均随温度的增大而减小, 当T = 100 K时, Seebeck系数均可取得最大值. 当x = 0.25时, 位于负值区域的峰值为235.98 ${{\text{μ}}{\rm{V}}} \cdot {{\rm{K}}^{ - {\rm{1}}}}$, 位于正值区域的峰值的绝对值为197.70 ${{\text{μ}}{\rm{V}}} \cdot {{\rm{K}}^{ - {\rm{1}}}}$, 当x = 0.5和x = 0.75时, 位于负值区域的峰值分别为329.86和376.61 ${{\text{μ}}{\rm{V}}} \cdot {{\rm{K}}^{ - 1}}$, 位于正值区域的峰值的绝对值分别为278.18和328.93 ${{\text{μ}}{\rm{V}}} \cdot {{\rm{K}}^{ - 1}}$, 因此, 三种替代浓度空穴掺杂下易获得较高的Seebeck系数. 图 5 Co2FeAl0.75Si0.25向下自旋态的(a)Seebeck系数, (b)电导, (c)热导和(d)功率因子随化学势的变化; Co2FeAl0.5Si0.5向下自旋态的(e) Seebeck系数, (f)电导, (g)热导和(h) 功率因子随化学势的变化; Co2FeAl0.25Si0.75向下自旋态的(i)Seebeck系数, (j)电导, (k)热导和(l)功率因子随化学势的变化 Figure5. The transport properties with variation of chemical potential $\mu $ for Co2FeAl1-xSix(x = 0.25, 0.5 and 0.75). The case of x = 0.25 corresponds to (a), (b), (c) and (d), and the case of x = 0.5 corresponds to (e), (f), (g) and (h), and the case of x = 0.75 corresponds to (i), (j), (k) and (l). The four columns from left to right correspond to the Seebeck coefficients S, electrical conductivity $\sigma $, electronic thermal conductivity ${\kappa _{\rm{e}}}$ and PF (${S^2}\sigma $), respectively.
表2计算的Co2FeAl1-xSix (x = 0.25, x = 0.5, x = 0.75)合金的弹性常数、体模量及剪切模量 Table2.The calculated cubic elastic constant C11, C12, C44, shear modulus Gv, GR and GH in GPa.
23.6.Co2FeAl1–xSix系列合金薄膜的电子结构 -->
3.6.Co2FeAl1–xSix系列合金薄膜的电子结构
近些年, 半金属薄膜材料越来越受到研究者的关注. 例如: Okamura等[42]将Co2FeAl作为铁磁层制备出Co2FeAl/Al-Ox/Co75Fe25磁隧道结, 得到47%的室温磁电阻. 文献[43-48]在MgO基底001面上制备了Co2FeAl0.5Si0.5 (CFAS)/Ag/CFAS的结构, 膜厚度为20 nm, 证明了使用CFAS Heusler合金作为铁磁电极在Ag作为底部缓冲层时可产生相对大的巨磁阻(MR), 并且通过增加两个CFAS层的有序度, 预期MR值的进一步增强. 本节对Co2FeAl1-xSix系列合金薄膜的电子结构进行了模拟计算, 建模采用如图1(a)所示的晶胞, 沿z方向扩充3倍再加真空层, 结构图如图1(b)所示. 当x = 0.25, x = 0.5, x = 0.75时, 膜的厚度分别为1.6956, 1.6982和1.6922 nm. 图7(a) —(c)分别为x = 0.25, x = 0.5, x = 0.75时的态密度, 费米能级处的电子自旋极化率分别为43.09%, 59.07%, 100%, 由此看出随着Si原子的增加, 自旋极化率在不断升高, 且当x = 0.75时, 合金的自旋极化率达到100%, 属于半金属, 可见Co2FeAl1–xSix系列合金的薄膜也可以呈现出很好的半金属特性. 图7(a)—(c)显示, 掺杂浓度x = 0.25, 0.5, 0.75时, 自旋向下方向的态密度分别在费米能级之上0.35, 0.31, 0.1 eV处出现峰值, 化合物总的态密度主要来自过渡金属元素Fe和Co原子的3d电子之间的强烈的d-d杂化. 而且, 总态密度与Co原子的分态密度趋势一致, 这也说明薄膜材料的电子结构主要受Co原子的影响. 图 7 (a) Co2FeAl0.75Si0.25, (b) Co2FeAl0.5Si0.5和(c) Co2FeAl0.25Si0.75薄膜的总态密度和原子分态密度 Figure7. Thetotaland atom-projected density of states for Co2FeAl1-xSix (x = 0.25, 0.5 and 0.75) film in (a), (b) and (c).
23.7.Co2FeAl1-xSix系列合金体相及其薄膜的四方畸变 -->
3.7.Co2FeAl1-xSix系列合金体相及其薄膜的四方畸变
近年来, 铁磁形记忆合金(FSMAS)在磁场的作用下表现出很好的物理性质而备受关注, 目前已经报道过的Heusler型FSMAs主要有Ni-基, Mn-基, Fe-基和Co-基体系. 基于前人的结论可知, Heusler合金体系要发生马氏体相变需要满足一定的条件: 首先要有充足的相变驱动力即四方相与立方相之间的能量差值$\Delta E$; 其次, 畸变度, 即晶格常数c与a的比值也是关键, 满足马氏体相变的适当的畸变度c/a通常在1.2—1.3之间[18]. 图8(a)—(f)分别为Co2FeAl1–xSix系列合金体相及其薄膜的相变驱动力随畸变度的变化. 可以看到, 体相的Co2FeAl1–xSix系列合金能量最低点均出现在c/a = 1处, 没有发生马氏体相变. Co2FeAl1–xSix系列合金薄膜的能量最低点均未出现在畸变度c/a = 1处, 当掺杂浓度x = 0.25, 0.5, 0.75时, 能量最低点分别出现在畸变度c/a = 1.05, c/a = 1.02, c/a = 1.2处, 即在x = 0.25, x = 0.5时不存在马氏体相变, 而在x = 0.75时存在马氏体相变. 图 8 (a) x = 0.25,(b) x = 0.5和(c) x = 0.75替代浓度下Co2FeAl1-xSix合金体相的总能量差$\Delta E$与畸变度c/a的关系; (d) x = 0.25, (e) x = 0.5和(f) x = 0.75替代浓度下Co2FeAl1-xSix薄膜的驱动力$\Delta E$与畸变度c/a的关系 Figure8. Calculated total energies as a function of the c/a ratio for Co2FeAl1-xSix (x = 0.25, 0.5 and 0.75) Heusler alloys in (a), (b) and (c) andfilm materials in (d), (e) and (f).
23.8.Co2FeAl1–xSix系列合金薄膜的磁性在四方畸变下的响应 -->
3.8.Co2FeAl1–xSix系列合金薄膜的磁性在四方畸变下的响应
我们知道, 在立方相到四方相的结构畸变的过程中, 由于原子间距发生改变, 原子轨道之间的杂化强度会发生变化, 从而影响电子态密度, 进而影响磁特性. 图9(a)—(c)分别为Co2FeAl1–xSix系列合金薄膜在掺杂浓度x = 0.25,0.5和0.75下总磁矩及各原子磁矩随畸变度的变化. 由图可知, 当x = 0.25时, 当c/a < 1即对c轴进行压缩时, 总磁矩随着c/a的值的增大而增大, 由图可知Fe原子的磁矩变化决定了总磁矩的变化, 在1.0 < c/a <1.05的范围内, 总磁矩先减小后增大, Fe和Co原子共同决定了总磁矩的变化, 在c/a> 1.05时, 由图可知总磁矩的变化趋势主要决定于Co原子的磁矩变化. 当x = 0.5时, 由图可知磁矩的主要变化在畸变度c/a在1.0到1.1之间, 在c/a < 1.0时, 总磁矩主要趋势由Fe和Co两种原子磁矩变化决定, 当1.0 < c/a < 1.1时, 总磁矩先减小后增加, 主要变化趋势由Fe和Co两种原子变化趋势决定, c/a > 1.1时, 总磁矩略有减小, 变化趋势主要由Co原子变化趋势决定. 当x = 0.75时, 在c/a < 1.06范围内磁矩未产生明显变化, 在1.08 < c/a < 1.15之间, 磁矩先增加后减小, 磁矩的主要变化趋势决定于Co原子的主要变化趋势, c/a > 1.15时, 随着畸变度的增加, 总磁矩略有减小, 而且总磁矩变化趋势主要由Co原子磁矩变化决定. 图 9 (a) x = 0.25,(b) x = 0.5和(c) x = 0.75替代浓度下Co2FeAl1-xSix合金薄膜的总磁矩及各原子总磁矩随畸变度的变化 Figure9. The total magnetic moment and the magnetic moment of each atom of Co2FeAl1-xSix film change with distortion at x = 0.25, x = 0.5 and x = 0.75 in (a), (b) and (c).