Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11447229), the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX18_2412).
Received Date:14 May 2018
Accepted Date:13 November 2018
Available Online:01 January 2019
Published Online:20 January 2019
Abstract:The magnetism, band properties and electronic density of states of LiFeAs superconducting thin film with two-dimensional strain are investigated by using the first principles calculations based on density functional theory, and the influences of different strains on the characteristics of superconducting films are analyzed in detail. The results show that the magnetic ground configuration is the striped antiferromagnetic state of nostrained LiFeAs thin film, and the ground structure of this system is unchanged in the range of applied 1%?6% compressive and tensile strain. The density of states near the Fermi level is mainly from the contribution of Fe-3d orbital and a few As-4p electrons. The electron spin exchange coupling between Fe ions is realized by As ions. Furthermore, unlike the case of the nostrain and the tensile strain, with increasing the compressive strain, the localized antiparallel electron spin magnetic moments of Fe ion decrease, the density of states at the Fermi surface improves, and the itinerant electron magnetism of Fe ions increases, which all greatly suppress the antiferromagnetic properties of thin film and enhance the superconducting phase transition temperature. The superconductivity of LiFeAs thin film originates from the Cooper pairs of electrons between the hole-type and electronic-type bands near the Fermi surface through the antiferromagnetic superexchange coupling effect. Instead, the LiFeAs thin film with the tensile strain presents completely opposite properties, that is to say, the decrease of the electronic density of states in the Fermi level brings about the weakening of the metal properties and the increasing of the antiferromagnetic exchange coupling. Particularly, the band structure of hole-type near the Fermi surface disappears, and the occurrence of Cooper pairs of electrons becomes significantly reduced, resulting in the suppressed superconducting phase transition when the LiFeAs thin film is subjected to tensile strain. In addition, the change of antiferromagnetic exchange coupling and magnetic moments of Fe ions are also explained according to the variation of electronic density of states of the Fe-3d energy levels during the distortion of FeAs tetrahedrons due to compressive strain. In brief, our researches provide an effective way to improve the superconducting properties of LiFeAs thin film and may promote the relevant practical applications of iron-based superconductors in the future. Keywords:superconducting thin film/ strain/ magnetism/ electronic structure
表2不同应变作用下LFA薄膜中Fe离子的自旋磁矩 Table2.Magnetic moments of Fe ions of LFA thin films under different strains.
图 5 LFA超导薄膜在不同应变条件时各离子的电子态密度 (a) 无应变; (b) 压应变(?3%); (c) 张应变(3%) Figure5. The density of electronic states of different ions in LFA superconductor thin film under different strains: (a) Nostrained effect; (b) compressive strain (?3%); (c) tensile strain (3%).
因此, 为了具体分析不同应变作用下费米面附近电子态的变化情况, 我们也分别给出了LFA在无应变、?3%压应变和3%张应变情况下的电子态密度分布, 如图5所示. 不难发现, 无论是否存在应变, 在能量?6—3 eV之间, Fe-3d的电子态密度与总态密度的分布几乎一致, 且其态密度值仅次于总能态密度值, 表明LFA费米面附近电子态主要来自于Fe-3d电子. As-4p轨道电子则主要局域在费米面以下?5—?3 eV, 且Fe-3d和As-4p电子之间存在较强程度的杂化[25], 说明Fe离子之间的电子自旋交换耦合是通过As离子来实现的, 而Li-2s电子对费米面的贡献很小, 可以忽略不计, 这一点在实验中已经得到证实[26]. 掺杂或者加压的数据显示, LFA费米面附近电子态来自Fe-3d以及少部分As的4p电子杂化[27], 显然在二维应变作用下, 费米面附近的这种杂化相比于其低能区要微弱得多. 与图5(a)中LFA超导薄膜没有发生应变的电子结构相比, 当受到?3%的压应变作用时, 费米面下?4—?0.25 eV能量范围内, 电子自旋劈裂减弱, 可见局域自旋磁矩减小, 反铁磁性耦合被抑制, 而费米能级处总的电子态密度随着Fe-3d态密度值的增加而增加, 见图5(b). 这是因为压应变作用使得原先扁平的As四面体结构逐渐向正四面体畸变过程中(见图6), ${{\rm{t}}_{2{\rm{g}}}}$能级与${{\rm{e}}_{\rm{g}}}$能级间隔相对减小, Fe离子3d轨道的电子分布更趋于均匀, 在费米面下?3.5 eV左右处Fe-3d和As-4p之间的轨道杂化减弱, 参与形成Fe—As共价束缚的电子数减少, 更多的Fe-3d电子填充${{\rm{t}}_{2{\rm{g}}}}$态故而发生巡游变化, 原来贡献Fe离子磁矩的局域3d电子一部分变为巡游电子[28], 导致FeAs层中的载流子数增多, 从而费米面上的电子态密度增加. 巡游电子数的增加, 贡献了更多的电子自旋, 因此压应变作用下Fe离子总磁矩的增大主要来自于巡游电子数的增多. 这与其他铁基超导材料计算得到的结果相符合[29]. 相反, 在图5(c)中, LFA超导薄膜受到3%张应变作用时, 费米能级处总的电子态密度则随着Fe-3d态密度值的减小而减小. 费米能处Fe-3d态提供的巡游电子数减少, 电子的巡游磁矩${m_{\rm{i}}}$显著降低. 同时, 由于费米能以下处于束缚态的Fe离子核外3d电子的自旋劈裂显著增强, 导致体系的局域磁矩增大, 反铁磁性耦合增强, 从而抑制超导电性形成, 进而也影响材料的超导临界温度[22]. 可以推测, 与受到3%张应变相比, ?3%压应变作用可通过改变能带结构从而更好地激发LFA薄膜的超导特性. 所以, 我们可通过对LFA薄膜施加二维压应变, 诱导其超导特性以及为提高其临界相变温度提供可能. 图 6 以Fe离子为中心的As四面体结构畸变与3d轨道能级分裂 (a) 无应变时扁平的四面体; (b) 压应变作用下畸变后的正四面体 Figure6. The tetrahedral structure distortion of As centered on Fe ions and 3d orbital energy splitting of Fe ions: (a) Tabular tetrahedron without strain effect; (b) the distorted regular tetrahedron under compressive strain effect.