Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11804278, 11174234, 51272215) and the Fundamental Research Fund for the Central Universities, China (Grant No. G2017KY0105).
Received Date:26 October 2018
Accepted Date:02 December 2018
Available Online:01 February 2019
Published Online:05 February 2019
Abstract:Low frequency noise is always an important factor affecting people’s quality of life. At present, the most widely used sound absorbing materials include polyurethane foam, trimeric amine, mineral cotton, textiles, cotton and special sound insulation materials. However, the sizes of these materials are generally large, and the sound absorption efficiencies are often low, especially in a low frequency range (below 2000 Hz). Acoustic metamaterial is a kind of artificial composite material, which is constructed by microunits whose dimensions are much smaller than the working wavelength. The results show that if the strong coupling condition between the resonant scatter and the waveguide is satisfied, the sound energy flowing through the metamaterial will be completely offset by the internal loss of the resonant scatter. Therefore, it is believed that this kind of acoustic metamaterial can solve the absorption problem of low-frequency sound waves. In order to solve this problem, researchers have conducted a lot of exploratory researches. However, most of the structural units that are constructed with acoustic metamaterials are passive, that is, once the material is processed and shaped, its properties are fixed and cannot be changed. This defect greatly limits the development of acoustical metamaterials, so it is urgent to study acoustical metamaterials whose material properties and the working frequency bands are flexibly adjustable. Although tunable acoustic metamaterials have been studied, few people have extended this research to the field of low-frequency tunable sound absorption. In our previous work, we systematically studied the acoustic properties of two kinds of acoustic artificial " meta-atoms”, namely, open hollow sphere model with negative equivalent elastic modulus and hollow tube model with negative equivalent mass density. The research shows that these two kinds of " meta-atoms” both have obvious sound absorption effect. According to our previous studies, in this paper we couple these two kinds of " meta-atoms” into a whole, and design a new nested model of open loop. The model has the advantages of simple structure and easy preparation. Through theoretical analysis, numerical simulation and experimental testing, it is found that the strong coupling resonance effects between these " meta-atoms” can be excited by the low frequency incident acoustic wave in the nested structure, thus achieving nearly perfect sound energy absorption. In addition, the relative impedance of the metamaterial can be changed by simply rotating the inner splitting ring around the axis, therefore the position of the absorption peak can be freely controlled in a wide frequency band. Because of its deep sub-wavelength size, the metamaterial is very useful for miniaturizing and integrating the low-frequency acoustic absorption devices. What is more, this model also lays a foundation for designing the broadband absorbers. Keywords:tunable/ acoustic metamaterial/ low frequency/ absorber
2.模型分析设计可调声学超材料模型的重点是找到其共振频率与结构参数之间的关系, 并通过改变结构参数来改变其共振频率, 进而实现频率可调的目的. 对于一个局域共振型的声学超材料, 当入射声波的频率接近其共振频率时, 流体介质的黏滞损耗、材料的摩擦损耗和阻尼损耗会使该结构对入射声波产生强烈的吸收[1]. SHS作为一种声学“超原子”是典型的亥姆霍兹共振器结构[31], 其二维模型如图1(a)所示, 图中的蓝色箭头表示入射声波的传播方向, 蓝色虚线箭头表示声波在腔体中传播的路径. 根据等效媒质理论和等效电路原理, 该结构的内部空腔部分可以被看作是一个等效电容C0, 而开口的颈部可以被看作是一个等效电感L0, 两者串联, 如图1(b)所示. 两者与SHS结构参数之间的关系为 图 1 可调声学超材料的模型设计 (a), (b)二维SHS的结构示意图和等效电路图; (c), (d)二维HT的结构示意图和等效电路图; (e), (f)SHS和HT耦合后的结构示意图和等效电路图; (g)进一步变形优化得到的可调声学超材料模型的结构示意图 Figure1. Model design of the acoustic metamaterial: (a), (b) Schematic diagram and equivalent circuit diagram of the two-dimensional SHS; (c), (d) schematic diagram and equivalent circuit diagram of the two-dimensional HT; (e), (f) schematic diagram and equivalent circuit diagram of the coupled structure of SHS and HT; (g) schematic diagram of the tunable acoustic metamaterial obtained by the deformation and optimization of the coupled structure.
其中, R和R'分别为外层环形空腔的外径和内径, 外层环形空腔的径向宽度 w = R ? R'. 将(6)式代入到(5)式中可知, 仅通过简单地改变旋转角度$\theta $, 就可以对该开口环嵌套模型的共振频率进行可控调节, 进而实现可调声吸收.
3.仿真计算及数据分析为了验证上述理论分析, 首先利用有限元分析软件COMSOL 5.3a对所提出的可调声学超材料模型进行了数值仿真研究. 仿真的模型结构与图1(g)完全一致, 其中外层开口的宽度和深度分别为d' = 5 mm 和h' = 3 mm, 环形空腔的外径和内径分别为R = 20 mm 和R' = 14 mm, 内层开口空腔的开口宽度为d = 5 mm, 壁厚为w = 4 mm. 内层开口空腔可绕其中心轴线进行0o—180°任意旋转. 为了最大程度地接近真实环境, 选取声热耦合模块对该模型进行仿真[30]. 声波的传播媒质为空气, 考虑到黏滞损耗, 设置空气为黏性流体. 空气的质量密度和空气中的声速分别为$\rho $ = 1.21 kg/m3和c = 343 m/s. 声波的辐射模式为平面波辐射. 由于固体材料部分的阻抗远大于空气阻抗, 因此图1(g)中所有灰色部分被设置为声硬边界. 为了消除求解域中侧向边界对声波的散射效应, 将其设置为周期性边界, 其周期长度为50 mm. 仿真求解的频率范围为500—1600 Hz. 图2(a)展示了仿真得到的该超材料模型的吸收系数对比结果. 从图2(a)可以看出, 对于不同的内腔旋转角度(0°, 90°和180°), 该超材料均会出现一个非常强的共振吸收峰, 峰值位置分别出现在1000, 810和755 Hz. 即随着内腔旋转角度的增大, 吸收峰的位置会发生红移, 该结果证明了这种超材料吸收器能够在低频区域表现出较大的可调特性. 值得注意的是, 该超材料吸收器的总体厚度只有50 mm, 仅为其工作波长的近1/8, 这就意味着该吸收器具有深亚波长的尺寸, 因而更有利于器件的小型化和集成化. 通常情况下, 为了获得完美的吸收效应, 吸收器的阻抗必须与声波传输媒质相匹配, 即阻抗的虚部必须接近0, 同时实部必须接近1. 图 2 仿真得到的可调声学超材料的吸收性能对比 (a)不同内腔旋转角度下的吸收系数随频率的变化; (b)不同内腔旋转角度下的相对阻抗实部与虚部随频率的变化; (c)理论和仿真得到的共振频率随内腔旋转角度的变化关系 Figure2. Simulated comparison of the absorption performance of tunable acoustic metamaterial: (a) Absorption coefficient for different rotation angles of the inner split ring as a function of frequency; (b) real parts and imaginary parts of the relative impedance for different rotation angles of the inner split ring as a function of frequency; (c) comparison of the theoretical and simulated resonant frequency as a function of rotation angle.
为了进一步理解该超材料的吸收机理, 对比了其在上述三种内腔旋转角度下的相对阻抗(Z/Z0)值随频率的变化, 结果如图2(b)所示. 从图2(b)可以看出, 三者的虚部分别在1000, 810和755 Hz处穿过零点, 而这三个频率点刚好对应各自共振吸收峰的位置. 并且在相应频率处, 三者的实部分别为1.07, 1.29和1.30, 即逐渐远离空气阻抗, 因此其共振吸收峰强度有所减弱. 但是由于其阻抗仍然接近于1, 因此整体仍然保持接近完美的吸收性能. 此外, 还对不同旋转角度下的共振频率进行了理论和仿真结果对比, 如图2(c)所示. 从图2(c)可以看出, 仿真结果与理论模型匹配得很好, 因此也验证了理论模型的正确性. 为了更直观地描述该超材料的共振吸声过程, 针对内腔旋转角度为0°的状态, 提取了其在三个不同频率(分别为500, 1000和1600 Hz)下的声场能量(p2)分布图, 分别如图3(a)、图3(c)和图3(e)所示, 白色箭头表示入射声波的传播方向. 可以看出, 在非共振频率下(图3(a)和图3(e)), 入射声波和反射声波的叠加会在求解区域中产生非常明显的驻波. 虽然超材料内部的声能量相较外部会有所增大, 但其最大值仅为7 Pa2. 相比之下, 在共振频率处, 超材料内部的声能量为近40 Pa2, 远远大于超材料外部的声能量. 由于此时激发了超材料内部强烈的耦合共振模式, 几乎所有的入射声能量都被局域在超材料内部, 只有极少部分可以从超材料中逃逸出来. 虽然大部分声能量被局域在超材料结构内部, 但是真正起到声能损耗的关键部位并不完全与之重合. 文献[16]中提到, 声能量在超材料结构中的损耗受其内部的空气介质和结构材料之间的相对速度影响. 空气的运动速度越大, 其与结构材料之间的摩擦力就越大, 进而声能损耗也越大. 因此, 又提取了各对应频率下超材料内部空气介质的局域速度场分布, 分别如图3(b)、图3(d)和图3(f)所示. 可以看出, 超材料开口处的空气流速远大于其内部的流速, 因此声能损耗主要发生在开口处. 此外, 在共振频率时, 空气流速的最大值是非共振频率时的近5倍, 局域于超材料中的声能量最终被转化为热能耗散掉[33], 因此表现出了接近完美的吸声效应. 图 3 不同频率下的声能量和空气介质局域速度分布图对比 (a), (b) 500 Hz处的声能量和空气局域速度图; (c), (d) 1000 Hz处的声能量和空气局域速度图; (e), (f) 1600 Hz处的声能量和空气局域速度图 Figure3. Comparison of the sound energy and local speed distributions at different frequencies: (a), (b) Sound energy and local speed fields at 500 Hz; (c), (d) sound energy and local speed fields at 1000 Hz; (e), (f) sound energy and local speed fields at 1600 Hz.
实验拼装时, 在外层腔体的顶部和底部涂覆一层油性黏土, 使其能与两个密封端紧密地结合在一起, 以此来保证整个结构单元的密封性. 实验中同样选取了三个不同的内腔旋转角度(分别为0°, 90°和180°)进行测试, 得到吸声系数随入射波频率的变化关系如图5所示. 三种状态下所对应的共振吸收峰值位置分别为992, 813和737 Hz, 均非常接近仿真结果(分别为1000, 810和755 Hz). 对比图2(a)和图5可以发现, 实验测得的峰值吸收系数稍小于仿真结果, 这是由样品的加工误差造成的. 除此之外, 变化趋势与仿真预测保持高度一致. 因此, 在实验上也验证了这种低频可调声学超材料吸收器的可行性. 图 5 实验测试得到的样品在不同内腔旋转角度(分别为0°, 90°和180°)下的吸收系数随频率的变化 Figure5. Experimental absorption coefficient of the sample at different rotation angles (i.e. 0°, 90°and 180°, respectively) of the inner split ring as a function of frequency.