RESEARCH ON DYNAMIC TEST TECHNOLOGY FOR WIND TURBINE BLADE AIRFOIL
LiGuoqiang1,2,*,, ZhangWeiguo2, ChenLi1, NieBowen2, ZhangPeng2, YueTingrui2 1State Key Laboratory of Aerodynamics , China Aerodynamics Research and Development Center , Mianyang 621000, Sichuan , China2 Low Speed Aerodynamics Institute , China Aerodynamics Research and Development Center , Mianyang 621000, Sichuan , China; 中图分类号:O355 文献标识码:A
关键词:风力机;翼型;横摆振荡;测压;风洞试验 Abstract The dynamic oscillation process of wind turbine blades is usually accompanied by pitching and yaw. Due to the unclear understanding of many dynamic problems previously, a safer design is adopted at the expense of increasing the weight of the blade structure in engineering, usually neglecting the influence of the yaw oscillation. The design of large wind turbines has put forward higher requirements for obtaining more comprehensive and accurate dynamic loads of airfoils. It is of great significance to study the influence of yaw oscillation on the dynamic aerodynamic characteristics of airfoil. In view of this, the dynamic wind tunnel test on yaw oscillation of airfoil is carried out in this paper for the first time. The “electronic cam” technology is used instead of the mechanical cam to realize the stepless adjustment of oscillation frequency and oscillation angle. Based on the designed electronic external trigger device, the real-time measurement of the dynamic flow field is realized. Meanwhile, the synchronous acquisition of wind tunnel flow, model angular displacement and dynamic pressure data is realized. Furthermore, the static pressure measurement, pitching / yaw dynamic pressure measurement, PIV and fluorescent wire test are carried out respectively. The accuracy of the test results is high, and the regular pattern is reasonable. Besides, the influence mechanism of wall interference in dynamic test is analyzed. Research shows that: there is also obvious hysteresis effect on the dynamic aerodynamic parameters of yaw oscillation airfoil with the changing of the angle of attack. And with the increase of oscillation frequency, the aerodynamic hysteresis characteristics of the airfoil under pitching and yaw oscillation are all enhanced. The dynamic stall vortex at the positive stroke is delayed due to the pitching oscillation. The pressure distribution of the airfoil is greatly influenced by the strong three-dimensional effect at the intersection of the wind tunnel wall and the model tip. Overall, the dynamic test technique of yaw oscillation established in this paper can provide technical support for the study of the dynamic swept effect of the wind turbines.
试验在中国空气动力研究与发展中心FL-11风洞中完成, 该风洞是一座低速回流式风洞, 其试验段入口尺寸为1.8 m (宽) 1.4 m (高) ,出口尺寸为1.84 m (宽) 1.4 m (高), 长度为5.8 m, 模型中心距试验段入口下游2.6 m. 风速低于70 m/s 时湍流度达到0.000 8, 轴向静压梯度优于规范指标0.005, 试验稳定风速范围 m/s.
3.2.1数据考核验证 雷诺数为 时, FL-11风洞试验结果与OSU (俄亥俄州立大学)[11]、CSU (科罗拉多州立大学)[31]的风洞数据分别进行对比验证. 比较动态压力传感器测得的翼型表面压力分布(图 11)和升力系数曲线(图 12)可知, FL-11风洞试验结果和这两家机构的结果吻合良好, 且FL-11风洞动态压力孔测量获得的 数据与静态压力孔测量获取的结果一致性良好. 总体评价, 动态压力测量系统可靠性较好, 测量结果具有较高的试验准度. 显示原图|下载原图ZIP|生成PPT 图 11迎角16.1°下, 翼型表面压力分布与OSU风洞数据对比. -->Fig.11Comparison of surface pressure distribution of airfoil with OSU wind tunnel data at 16.1 °AOA -->
显示原图|下载原图ZIP|生成PPT 图 12动态压力传感器测得翼型曲线. -->Fig.12 curve of airfoil measured by dynamic pressure sensors -->
图13给出了 (风洞速压为540 Pa)下, 俯仰振荡 和静态翼型的升力系数比较曲线. 在正行程(迎角增大的方向, 即) 小迎角范围, 翼型的迟滞回线存在升力线性段, 并与静态试验升力线接近, 动态失速迎角相对于静态失速迎角8°推迟约6°. 迎角继续增大, 升力下降, 翼型一个振荡周期内升力系数随迎角的变化形成明显的迟滞回线. 这主要是因为, 翼型在一个振荡周期内, 经历了涡的形成、发展、破裂和恢复过程, 迟滞现象主要是由负行程(迎角减小的方向, 即)时翼型分离涡重建的延迟引起的. 显示原图|下载原图ZIP|生成PPT 图 13下动态结果和静态结果对比. -->Fig.13Comparison of dynamic and static results with -->
在满足折算频率和雷诺数相似前提下, 对翼型俯仰振荡 条件下FL-11 风洞的试验结果进行了考核验证, 结果如图 14所示. 由于模型尺度和风洞指标的差别, 不同风洞动态试验结果之间存在一定差异. FL-11 试验的失速迎角在OSU的失速迎角之前, 但在西工大的NF-3风洞试验的失速迎角之后, 在 范围内, FL-11 试验和NF-3试验的升力系数均比OSU 的数据偏小, 整体看FL-11试验数据和NF-3数据更接近, 在负行程和OSU的数据更接近. 文献[32]认为动态试验的随机误差和洞壁干扰等因素使得不同风洞得到的动态试验结果很难接近. 显示原图|下载原图ZIP|生成PPT Fig.14Comparison of dynamic test results of different wind tunnels under the similarity of and 3.2.2俯仰振荡频率影响 --> -->
图 15为, 时不同振荡频率下翼型的升力、俯仰力矩系数对比曲线. 当翼型振荡至临界迎角8°附近, 迟滞回路区域仍在增大, 在这种情形下, 可以观察到失速的延迟以及最大升力系数的提高. 随着振荡频率升高(振荡频率, 对应折算频率值), 迟滞回线区域增大, 动态失速迎角、最大升力系数、最大俯仰力矩系数也有增大的趋势, 显示出流动的非定常效应随频率升高而增强. 而对于负行程中某一迎角而言, 则值越大, 升力系数越小. 显示原图|下载原图ZIP|生成PPT 图 15不同折算频率下翼型动态气动特性曲线. -->Fig.15Dynamic aerodynamic characteristics of airfoil under different conversion frequencies -->
3.2.3横摆振荡频率影响 在时, 模型采用整流翼尖端部, 图 16表明, 随着翼型振荡频率的升高, 横摆振荡翼型的升力系数、俯仰力矩系数的迟滞环面积也在增大, 迟滞环面积: 0.826 5→1.610 5→2.174 4, 迟滞环面积: 0.069 4→0.268 4→0.399 1, 显示出翼型三维流动的非定常性增强, 即翼型动态掠效应的变化使得气动参数随迎角变化的迟滞特性增强. 显示原图|下载原图ZIP|生成PPT 图 16, 不同振荡频率下翼型升力和俯仰力矩系数曲线. -->Fig.16, lift and pitching moment Coefficient under different oscillating frequencies -->
(TangRuiyuan, ZhaoMingliang, Wu Yongjian, et at. The application of the force measurement method on experimental study of airfoil dynamic stall ., 1995, 9(2): 16-20 (in Chinese)) [本文引用: 2]
[13]
MaJ, XuJ, GuoR, et al. PIV experimental study of a 2-D wind turbine airfoil . , 2010 [本文引用: 1]
(ZhouRuixing, ShangguanYunxin, Xie Yajun et al. Dynamic stall characteristics of two different rotor-blade airfoils ., 1999, 17(3): 475-479 (in Chinese)) [本文引用: 1]
(WangQing, ZhaoQijun, ZhaoGuoqing.PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model ., 2014, 46(4): 631-634 (in Chinese)) [本文引用: 1]
(ShiZhiwei, MingXiao, WangTongguang.The effects of unsteady free stream on the static and pitching airfoils ., 2008, 26(4): 493-497 (in Chinese)) [本文引用: 1]
[21]
LeishmanJG.Modeling sweep of leading edge thrust phenomena ,, 1980, 17(12): 890-897. [本文引用: 1]
[22]
LEISS. Unsteady sweep-A key to simulation of three dimensional rotor blade airloads//11th European Rotorcraft Forum , , 1985 [本文引用: 1]
(CuiWeiwei, XiangXiaorong, DuJianyi, et al.Effects of sweep on the performance of highly loaded transonic rotors ., 2012, 33(5): 753-756 (in Chinese)) [本文引用: 1]
[26]
YangJ, GaneshB, KomerathN.Radial flow measurements downstream of forced dynamic separation on a rotor blade//36th AIAA Fluid Dynamics Conference and Exhibit, , 2006 [本文引用: 1]
[27]
HenknerJ, RankeH.Unsteady boundary layer separation on swept and unswept wings in sinusoidal dynamic stall motion// , 1997 [本文引用: 1]
[28]
SalariK, RoacheP.The influence of sweep on dynamic stall produced by a rapidly pitching wing// , 2013 [本文引用: 1]
[29]
LorberPF.Dynamic stall of sinusoidally oscillating three-dimen-sional swept and unswept wings in compressible flow//Annual Forum Proceedings-American Helicopter Society, , 1992 [本文引用: 1]
(LuXiyun, ZhuangLixian, YinXieyuan, et al.Numerical simulation of flows past a longitudinally oscillating airfoil at high incidences ., 1993, 14(11): 632-635 (in Chinese)) [本文引用: 1]
[31]
ButterfieldCP, MusialWP, SimmsDA.Combined experiment phase I final report. , 1992 [本文引用: 1]
(XiaYushun, XiZhongxiang, ZhouRuixing, et al.Dynamic stall characters of NACA0012 airfoil and investigations of dynamic pressure measure methods ., 1996, 17(7): 26-31 (in Chinese)) [本文引用: 1]
(LiuQiang, LiuZhou, BaiPeng, et al.Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number ., 2016, 48(2): 269-277 (in Chinese)) [本文引用: 1]
(ZhangWeiguo, WuJie, LanBo, et al.Static and dynamic test technology for rotor airfoil low speed wind tunnel//Summary of the 2015 China mechanics Conference, , 2015 (in Chinese)) [本文引用: 1]