DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS 1)
TongFulin*,2),, LiXin?,**, YuChangping?, LiXinliang?,** *(Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan,China)?(Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)**(School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China 中图分类号:V211.3,O241.3 文献标识码:A
关键词:;激波湍流边界层干扰;直接数值模拟;湍动能;低频振荡 Abstract The peak of local thermal load might be severe due to the interactions of hypersonic shock wave and turbulent boundary layer. It has significant effect on the aerodynamic performance and flight safety of vehicle. Most previous studies on the interaction in hypersonic condition were based on the Reynolds-averaged methods, the corresponding direct numerical simulation is relatively scarce. The direct numerical analysis of hypersonic shock wave and turbulent boundary layer interaction are helpful to the understanding of the relevant mechanisms and the improvement of existing turbulent modes and sub-grid stress models. Numerical analysis of hypersonic shock wave and turbulent boundary layer interactions in a 34° compression ramp are carried out by means of direct numerical simulation for a free-stream Mach number . Based on the Reynolds stress anisotropy tensor, the evolution of turbulent boundary layer along the compression ramp is analyzed. The compressibility effects on turbulent kinetic energy and its transport mechanism are studied through item by item analysis of transport equation. Using dynamic mode decomposition method, the characteristic of unsteadiness in the interaction region is investigated. It is found that along the flow developing downstream, the turbulent state in the near wall region is gradually turned into two-component turbulence from two-component axisymmetric state. The turbulence in outer region approaches the isotropic state from axisymmetric expansion. The results exhibit that there exist significant compressibility effects in the interaction region. The pressure-dilation correlation in turbulent kinetic energy budgets is enhanced significantly. However, it has little effect on the dilatational dissipation. The low-frequency oscillation in hypersonic compression ramp is characterized by the breathing motion of separation bubble. According to the spatial structure of low frequency dynamic modes, the unsteadiness is strongly associated with the separated shear layer.
Keywords:hypersonic;shock wave and turbulent boundary layer interactions;direct numerical simulation;turbulent kinetic energy;low-frequency oscillation -->0 PDF (14581KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究1)[J]. 力学学报, 2018, 50(2): 197-208 https://doi.org/10.6052/0459-1879-17-239 TongFulin, LiXin, YuChangping, LiXinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208 https://doi.org/10.6052/0459-1879-17-239
新窗口打开 图2分别给出了特征点E1处湍流边界层内速度的平均剖面和脉动强度. 可以看到,计算得到的流向速度剖面存在明显的线性区,过渡区和对数区. 在黏性底层( )的区域内符合线性分布规律;在对数律区域( )内符合对数分布规律;两者之间为过渡区. 同时,由于采用半局部摩擦速度无量纲化,计算得到流向、法向及展向速度脉动强度与不可压缩平板湍流边界层[21,22]的结果符合较好. 图2也显示出了近壁区3个方向脉动强度具有很强的各向异性. 显示原图|下载原图ZIP|生成PPT 图2平均速度剖面和脉动强度 -->Fig. 2Profiles of mean velocity and root-mean square -->
出口及上边界均采用无反射边界条件,物面边界为无滑移条件和等温壁,展向为周期性条件. 在湍流的直接数值模拟中,一般通过考察脉动速度的展向关联函数来验证展向计算域合理性. 图3给出了拐角角点处的关联函数. 在展向距离 大于半个计算域展向宽度时(本文展向计算域约为 ,可以看到,3个方向上脉动速度的关联函数均稳定衰减到零附近. 这表明计算中选取的展向计算域足够大,展向周期性边界条件是合理的,能够有效地模拟拐角角部区域中的大尺度涡结构. 显示原图|下载原图ZIP|生成PPT 图3展向相关函数分布 -->Fig. 3Distribution of two-point correlations in the spanwise direction -->
2 平均及瞬态结果
在计算达到统计平衡态后,对流场数据样本进行统计平均. 如无特别说明,论文中采用的平均为时间推进方向以及展向的时--空平均. 图4分别给出压缩拐角内物面压力和摩阻系数的分布. 可以看到,拐角内物面压力首先急剧升高,这是由于分离激波造成的,随后出现了一个压力平台,紧接着由于再附激波的存在,压力再次急剧升高,最终物面压力趋近于无黏理论解. 压力平台的出现,表明角部区域内出了分离区. 同时,从物面摩阻系数分布来看,分离起始在 附近,再附点位于 ,分离区尺度约为 . 显示原图|下载原图ZIP|生成PPT 图4物面压力及摩阻系数分布 -->Fig. 4Distribution of wall pressure and skin-friction coefficient -->
显示原图|下载原图ZIP|生成PPT 图4物面压力及摩阻系数分布(续) -->Fig. 4Distribution of wall pressure and skin-friction coefficient (continued) -->
为了更好地揭示高马赫数下激波的运动特性,采用动态模态分解方法[29,30]进一步对拐角内的瞬态流场的动力学模态进行分析. 模态分析主要针对展向平均瞬态流向速度场进行操作. 模态分析的压缩拐角流场范围为:流向 ,物面法向0 mm mm. 瞬态流场的时间取样间隔为 ,样本总数为220. 图14给出了各模态特征频率与模态能量的对应关系. 研究发现,低频模态的能量较高,这与图13中的功率谱分析是相吻合的. 另外,为了考察低频模态的动力学性质,还选取了4个典型模态(如图14中模态 1 4所示)重构了压缩拐角内的瞬时流向速度场. 显示原图|下载原图ZIP|生成PPT 图14模态能量与特征频率的关系 -->Fig. 14Relationships between mode energy and frequencies -->
显示原图|下载原图ZIP|生成PPT 图15不同流向位置处随时间变化情况 -->Fig. 15Time series of the variable at various streamwise location -->
图15给出了低频模态运动学机制的定量化描述. 这里采用如下定义的变量 式中 为基于低频模态重构出的瞬时流向速度. 该变量可以直观地反映特征频率下拐角内分离泡的非定常运动过程. 如图所示,分离区内流动存在典型的周期性,运动周期约为 ,对应的特征频率为 . 图16依次给出了低阶重构的瞬时流场. 为了便于比较,图中还分别给出了平均音速线和拐角内的流线,其中拐角内蓝色区域代表分离泡的大小. 从分离区尺度来看,分离泡经历了一个膨胀--收缩的过程. 结果表明,高超声速压缩拐角流动的低频模态动力学性质与拐角内分离泡的膨胀/收缩运动密切相关. 显示原图|下载原图ZIP|生成PPT 图16基于低频模态 14重构的瞬时流场 -->Fig. 16Reconstruction of the flow field based on the low frequency modes 14 -->
考察低频模态的特征结构将有助于揭示低频振荡的物理机制. 为此,分析研究了低频模态 1 4的空间结构. 上述4个低频模态的空间结构较为类似,图17给出了其中mode 1的结果. 如图所示,低频模态特征结构主要集中在分离泡上方剪切层的根部附近,此外分离泡内也有较强的结构能量,这表明低频振荡与下游分离区剪切层密切相关. 而在干扰区的上游区域,模态结构量值非常小,基本可以忽略,这表明上游流动结构在激波低频振荡问题中并不起主导作用. 本文的研究成果也进一步支持了低频振荡的下游机制. 显示原图|下载原图ZIP|生成PPT 图17低频模态 1的实部 -->Fig. 17The real part of low frequency mode 1 -->
6 结论
本文采用直接数值模拟方法对来流马赫数6.0,34°压缩拐角内激波与湍流边界层干扰问题进行了数值研究. 通过分析雷诺应力各向异性张量,研究了高马赫数激波干扰下湍流边界层的演化历程. 探讨了可压缩效应对湍动能及其输运机制的影响规律. 采用动态模态分解方法对高超声速激波/湍流边界层干扰问题进行了动力学模态分析. 通过研究,得到以下结论: (1) 随着湍流边界层往拐角下游发展,近壁区流动由两组元轴对称湍流状态逐渐演化为两组元湍流状态,外层区域则由轴对称膨胀趋近于各向同性. 结果表明,再附区下游湍流边界层仍未恢复到平衡状态. (2) 高超声速拐角干扰区内强湍动能的输运过程与超声速干扰情况下的输运机制较为类似. 此外,干扰区存在以内在压缩性为主的强压缩效应. 可压缩效应对湍动能输运过程的影响主要体现在压力--膨胀项,其对膨胀--耗散项的影响相对较小. (3) 高超声速情况下分离激波的非定常运动仍存在低频振荡特性,其低频模态表征为分离泡的膨胀--收缩运动. 研究表明,低频振荡的物理机制与下游分离区剪切层密切相关. 致谢感谢国家超级计算广州中心,国家超级计算天津中心提供计算机时. The authors have declared that no competing interests exist.
DollingDS.Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530 [本文引用: 1]
[2]
GaitondeDV.Progress in shock wave / boundary layer interactions . Progress in Aerospace Sciences, 2015, 72: 80-99 [本文引用: 1]
[3]
EdwardsJR.Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results . Progress in Aerospace Sciences, 2008, 44: 447-465 [本文引用: 1]
[4]
KnightDD.Assessment of CFD capability for prediction of hypersonic shock interactions . Progress in Aerospace Sciences, 2012, 48: 8-26 [本文引用: 1]
[5]
DollingDS.High-speed turbulent separated flows: Consistency of mathematical models and flow physics . AIAA Journal, 1998, 36(5): 725-735
[6]
PirozzoliS.Numerical methods for high-speed flows . Annual Reviews of Fluid Mechanics, 2011, 43: 163-194 [本文引用: 1]
(LiXinliang, FuDexin, MaYanwen.Optimized group velocity control scheme . Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 79-83 (in Chinese)) [本文引用: 1]
AdamsNA.Direct simulation of the turbulent boundary layer along a compression ramp at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml86-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml87-0459-1879-50-2-197"><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="normal"> </mml:mi><mml:mn>685</mml:mn></mml:math></inline-formula> . Journal of Fluid Mechanics, 2000, 420: 47-83 [本文引用: 3]
[10]
PirozzoliS, GrassoF.Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml88-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula> . Physics of Fluids, 2006, 18: 065113 [本文引用: 1]
[11]
WuM, MartinMP.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp . AIAA Journal, 2007, 45(4): 879-889 [本文引用: 1]
[12]
WuM, MartinMP.Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data . Journal of Fluid Mechanics, 2008, 594: 71-83 [本文引用: 1]
[13]
PriebeS, WuM, MartinMP.Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction . Journal of Fluid Mechanics, 2012, 699: 1-49 [本文引用: 1]
[14]
HelmC, MartinMP, DupontP.Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction . AIAA paper, 2014, 2014-0941 [本文引用: 1]
[15]
LiXL, FuDX, MaYW.Direct numerical simulation of shock /turbulent boundary layer interaction in a supersonic compression ramp . Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658 [本文引用: 2]
[16]
FangJ, YaoYF, ZheltovodovAA.Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner . Physics of Fluids, 2015, 27: 125104 [本文引用: 1]
(TongFulin, LiXinliang, TangZhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction . Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese)) [本文引用: 1]
(LiXinliang, FuDexun, MaYanwen.Assessment of the compressible turbulence model by using the DNS data . Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229 (in Chinese)) [本文引用: 1]
[20]
PirozzoliS, GrassoF, GatskiTB.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml89-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula> . Physics of Fluids, 2004, 16: 530-545 [本文引用: 1]
[21]
WuX, MoinP.Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer . Journal of Fluid Mechanics, 2009, 630: 5-41 [本文引用: 1]
[22]
ErmLP, JoubertJ.Low Reynolds number turbulent boundary layers . Journal of Fluid Mechanics, 1991, 230: 1-44 [本文引用: 1]
[23]
JeongJ, HussainF.On the identification of a vortex . Journal of Fluid Mechanics, 1995, 285: 69-94 [本文引用: 1]
[24]
LiXL, FuDX, MaYW.Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml90-0459-1879-50-2-197"><mml:mi mathvariant="italic">Ma</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math></inline-formula> . Chinese Physics Letter, 2006, 23(6): 1519-1522 [本文引用: 1]
[25]
GrilliM, HickelS, AdamsNA.Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp . International Journal of Heat and Fluid Flow, 2013, 42: 79-93 [本文引用: 1]
[26]
PirozzoliS, BernardiniM, GrassoF.Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation . Journal of Fluid Mechanics, 2010, 657: 361-393 [本文引用: 2]