张红雪1, 2,
郭力铭1, 2,
吴凤英1, 2,
周碧青1, 2,
邢世和1, 2,
毛艳玲1, 3,,
1.福建农林大学资源与环境学院 福州 350002
2.土壤生态系统健康与调控福建省高校重点实验室 福州 350002
3.自然生物资源保育利用福建省高校工程研究中心 福州 350002
基金项目:中央财政林业科技推广示范项目(闽[2018]TG15号)和福建农林大学科技创新专项基金项目(KFA17397A, CXZX2017226)资助
详细信息
作者简介:胡坤, 主要研究方向为土壤碳氮循环。E-mail: 243978862@qq.com
通讯作者:毛艳玲, 主要研究方向为土壤碳氮循环。E-mail: fafum@126.com
中图分类号:S154计量
文章访问数:62
HTML全文浏览量:13
PDF下载量:33
被引次数:0
出版历程
收稿日期:2021-03-08
录用日期:2021-04-30
网络出版日期:2021-08-19
刊出日期:2021-09-06
Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil
HU Kun1, 2,,ZHANG Hongxue1, 2,
GUO Liming1, 2,
WU Fengying1, 2,
ZHOU Biqing1, 2,
XING Shihe1, 2,
MAO Yanling1, 3,,
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. University Key Lab of Soil Ecosystem Health and Regulation in Fujian, Fuzhou 350002, China
3. Fujian Colleges and Universities Engineering Research Institute of Conservation & Utilization of Natural Bioresources, Fuzhou 350002, China
Funds:This study was supported by the Central Finance Forestry Technology Promotion Demonstration Project of China (Min[2018]TG15), the Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University (KFA17397A, CXZX2017226)
More Information
Corresponding author:E-mail: fafum@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究烟秆炭基肥对薏苡土壤有机碳组分及微生物群落结构和丰度的影响, 以烟秆生物炭基肥为试验材料, 通过大田试验, 设置不施肥(CK)、常规施化肥(F)、施低量烟秆炭基肥(LBF)、施高量烟秆炭基肥(HBF) 4个处理, 测定土壤pH、有机碳组分及土壤细菌群落结构和丰度, 同时研究与土壤碳循环和微生物活性有关的4种酶活性变化特征, 分析土壤pH、土壤有机碳组分、土壤酶和土壤细菌丰度之间关系。结果表明: 1)施用烟秆炭基肥显著提高土壤pH及土壤有机碳(SOC)、可溶性有机碳(DOC)、颗粒有机碳(POC)和微生物量碳(MBC)含量, 其中MBC提升效果最明显, 与常规施化肥相比提高41.09%~76.04% (P<0.05)。2)施用烟秆炭基肥显著提高土壤淀粉酶、脱氢酶活性, 与常规施化肥相比分别平均提高44.28%和57.54% (P<0.05), 而对土壤蔗糖酶影响不显著。3)施用烟秆炭基肥提高土壤细菌群落Chao1指数和Shannon指数, 提高土壤细菌丰度及多样性。4)施用烟秆炭基肥影响土壤细菌群落组成结构, 提高放线菌门和拟杆菌门相对丰度, 降低变形菌门和绿弯菌门相对丰度; 显著提高硝化螺旋菌属、布氏杆菌属等细菌属丰度(P<0.05), 降低酸土单胞菌属、泉发菌属丰度(P<0.05)。5)通过RDA分析, 土壤pH、碳组分、土壤酶活性和土壤细菌门群落丰度在烟秆炭基肥施用后存在一定相关关系, 其中土壤pH、SOC、POC、DOC和MBC含量与土壤各种酶活性均呈显著正相关关系(P<0.05), 而与变形菌门呈显著负相关(P<0.05)。综上, 烟秆炭基肥可以提高土壤pH、增加土壤有机碳组分含量、提高土壤酶活性和土壤细菌丰度, 进而改善土壤细菌群落结构, 改良薏苡种植土壤, 优化土壤生态。该研究可为烟秆废弃物资源化利用、土壤肥力提升提供参考依据。
关键词:烟秆炭基肥/
薏苡/
土壤有机碳组分/
酶活性/
微生物
Abstract:Long-term continuous cropping of adlay ( Coix lacryma-jobi L.) and the indiscriminate application of chemical fertilizers have led to soil fertility declines and acidification. To explore the effects of tobacco stalk biochar-based fertilizer on the soil organic carbon (SOC) fractions and microbial community structure and abundance, tobacco stalk biochar-based fertilizer was used in a field experiment with four treatments: no fertilizer, conventional fertilizer, low tobacco stalk biochar-based fertilizer, and high tobacco stalk biochar-based fertilizer. Changes in the activities of four enzymes related to soil carbon cycling and microbial activity were evaluated, and the relationships between the soil pH, SOC fractions, soil enzymes, and soil bacterial abundance were analyzed. The results showed that: 1) The application of tobacco stalk carbon-based fertilizer significantly increased the soil pH and the contents of SOC, dissolved organic carbon (DOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) (P<0.05). The MBC was most affected, increasing by 41.09%?76.04% compared to conventional fertilizer application. 2) The application of tobacco stalk biochar-based fertilizer significantly increased the activities of soil amylase and dehydrogenase (P<0.05). Compared to conventional chemical fertilizers, amylase and dehydrogenase activities increased by 44.28% and 57.54%, respectively, whereas the soil invertase activity was unaffected when tobacco stalk biochar-based fertilizer was applied. 3) The application of tobacco stalk biochar-based fertilizer increased the Chao1 and Shannon indexes, abundance and diversity of the soil bacterial communities. 4) The application of tobacco stalk biochar-based fertilizer affected the composition and structure of the soil bacterial community, increased the relative abundance of Actinomycetes and Bacteroides, and reduced the relative abundance of Proteobacteria and Chloroflexus. It also significantly increased the abundance of Nitrospira, Bryobacter, and other bacterial genera, and significantly reduced the abundance of Aciditerrimonas and Crenothrix. 5) Redundancy anaylsis showed that soil pH, carbon fraction, soil enzymes activities, and soil bacterial community abundance were correlated each other after the application of tobacco stalk biochar-based fertilizer; soil pH, SOC, POC, DOC, MBC were significantly positively correlated with the activities of various soil enzymes (P<0.05), but were significantly negatively correlated with Proteobacteria (P<0.05). In summary, tobacco stalk biochar-based fertilizer increased the soil pH, SOC fractions, soil enzymes activities, and soil bacterial abundance, which improved the soil bacterial community structure and the adlay planting soil and optimized the soil ecology. This study provides a reference for the resource utilization of tobacco stalk and improvements in soil fertility.
Key words:Tobacco stalk biochar-based fertilizer/
Adlay/
Soil organic carbon fractions/
Enzyme activity/
Microorganism
HTML全文
图1不同处理土壤细菌α多样性
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer.
Figure1.Alpha diversity of soil bacteria under different treatments
下载: 全尺寸图片幻灯片
图2不同处理土壤细菌群落分布PCA分析图
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer.
Figure2.PCA analysis of soil bacterial community distribution under different treatments
下载: 全尺寸图片幻灯片
图3基于STAMP分析的不同处理土壤显著差异的细菌属
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer.
Figure3.Soil bacterial genera with significant differences among different treatments based on STAMP analysis
下载: 全尺寸图片幻灯片
图4基于分类信息的LEfSe分析的不同处理土壤细菌进化分支图
Figure4.Evolutionary branch diagram of LEfSe analysis of soil bacteria based on classification information
下载: 全尺寸图片幻灯片
图5土壤pH、碳组分与酶活性及细菌门水平相对丰度相关分析
SOC: 土壤有机碳; DOC: 可溶性有机碳; POC: 颗粒有机碳; EOC: 易氧化有机碳; MBC: 微生物量碳; S-AMY: 土壤淀粉酶; S-INV: 土壤蔗糖酶; S-DEH: 土壤脱氢酶; S-CAT: 土壤过氧化氢酶; Pro: 变形菌门; Act: 放线菌门; Chl: 绿弯菌门; Aci: 酸杆菌门; Sac: 螺旋体菌门; Bac: 拟杆菌门; Gem: 芽单胞菌门; Nit: 硝化螺旋菌门; Ver: 疣微菌门; Pla: 浮霉状菌门。SOC: soil organic carbon; DOC: dissolved organic carbon; POC: particulate organic carbon; EOC: easily oxidized organic carbon; MBC: microbial biomass carbon; S-AMY: soil amylase; S-INV: soil sucrase; S-DEH: soil dehydrogenase; S-CAT: soil catalase; Pro: Proteobacteria; Act: Actinobacteria; Chl: Chloroflexi; Aci: Acidobacteria; Sac: Saccharibacteria; Bac: Bacteroidetes; Gem: Gemmatimonadetes; Nit: Nitrospirae; Ver: Verrucomicrobia; Pla: Planctomycetes.
Figure5.Correlation analysis among soil pH, carbon components, enzymes activities and relative abundances of bacterial phyla
下载: 全尺寸图片幻灯片
表1供试材料基本化学性质
Table1.Basic chemical properties of the test materials
供试材料 Test material | pH | 全碳 Total carbon (g?kg?1) | 全氮 Total nitrogen (g?kg?1) | 全磷 Total phosphorus (g?kg?1) | 全钾 Total potassium (g?kg?1) | 碱解氮 Available nitrogen (mg?kg?1) | 有效磷 Available phosphorus (mg?kg?1) | 速效钾 Available potassium (mg?kg?1) |
黄红壤 Yellow red soil | 5.52 | 9.90 | 0.82 | 0.20 | 18.22 | 73.54 | 25.41 | 259.22 |
生物炭 Biochar | 9.74 | 645.20 | 22.13 | 2.53 | 118.58 | 44.58 | 17.05 | 53.22 |
炭基肥 Biochar-based fertilizer | 7.75 | 389.04 | 75.45 | 49.56 | 65.62 | \ | \ | \ |
土壤pH测定的土水比为1∶2.5, 生物炭pH测定的炭水比为1∶10。The soil pH is measured using a soil-water ratio of 1∶2.5, and the biochar pH is measured using a carbon-water ratio of 1∶10. |
下载: 导出CSV
表2不同处理下土壤pH和有机碳组分变化
Table2.Changes of soil pH and organic carbon fractions under different treatments
处理 Treatment | pH | 土壤有机碳 Soil organic carbon (g?kg?1) | 可溶性有机碳 Dissolved organic carbon (mg?kg?1) | 颗粒有机碳 Particulate organic carbon (g?kg?1) | 易氧化有机碳 Easily oxidized organic carbon (g?kg?1) | 微生物量碳 Microbial biomass carbon (mg?kg?1) |
CK | 5.52±0.02b | 10.06±1.01c | 70.32±0.46d | 2.52±0.05d | 3.98±0.29c | 76.22±1.68c |
F | 5.38±0.05c | 10.21±0.59c | 87.54±1.54c | 3.47±0.12c | 4.36±0.20b | 99.97±1.22c |
LBF | 6.08±0.03a | 11.25±0.21b | 93.04±4.47b | 4.33±0.09b | 4.42±0.06b | 141.05±5.62b |
HBF | 6.10±0.04a | 12.54±0.59a | 101.83±1.17a | 4.75±0.23a | 4.65±0.38a | 175.99±4.61a |
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。同列数据后不同小写字母表示在P<0.05水平差异显著。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer. Different lowercase letters in the same column represent significant differences at P<0.05 level. |
下载: 导出CSV
表3不同处理下土壤酶活性变化
Table3.Changes in soil enzymes activities under different treatments
处理 Treatment | 淀粉酶 Amylase (mg·g?1) | 蔗糖酶 Sucrase (mg·g?1) | 脱氢酶 Dehydrogenase (μg·g?1) | 过氧化氢酶 Catalase (mL·g?1) |
CK | 30.59±0.66d | 42.66±1.61a | 27.86±1.42c | 0.71±0.05b |
F | 41.18±1.67c | 41.44±2.81a | 32.03±2.71c | 0.80±0.06b |
LBF | 54.12±3.33b | 44.08±4.17a | 46.62±1.83b | 0.84±0.02b |
HBF | 64.71±1.66a | 46.99±2.14a | 54.27±2.40a | 1.10±0.04a |
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。同列数据后不同小写字母表示在P<0.05水平差异显著。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer. Different lowercase letters in the same column represent significant differences at P<0.05 level. |
下载: 导出CSV
表4不同处理土壤细菌门水平的菌群分布百分比
Table4.Percentage distribution of soil bacteria at the phyla level under different treatments
门 Phylum | CK | F | LBF | HBF |
浮霉状菌门 Planctomycetes | 0.81 | 0.37 | 0.60 | 0.57 |
疣微菌门 Verrucomicrobia | 0.95 | 0.66 | 0.75 | 0.69 |
硝化螺旋菌门 Nitrospirae | 1.48 | 0.65 | 1.59 | 1.07 |
芽单胞菌门 Gemmatimonadetes | 2.85 | 4.79 | 4.82 | 4.68 |
拟杆菌门 Bacteroidetes | 4.06 | 4.32 | 4.95 | 5.29 |
螺旋体菌门 Saccharibacteria | 4.26 | 3.34 | 4.45 | 4.66 |
酸杆菌门 Acidobacteria | 9.07 | 4.05 | 4.17 | 5.21 |
绿弯菌门 Chloroflexi | 13.95 | 15.49 | 12.97 | 13.85 |
放线菌门 Actinobacteria | 19.52 | 22.25 | 23.03 | 24.69 |
变形菌门 Proteobacteria | 39.70 | 39.86 | 37.97 | 35.36 |
CK: 对照; F: 常规施化肥; LBF: 施低量烟秆炭基肥; HBF: 施高量烟秆炭基肥。CK: control; F: conventional chemical fertilization; LBF: application of low amount of tobacco stalk biochar-based fertilizer; HBF: application of high amount of tobacco stalk biochar-based fertilizer. |
下载: 导出CSV
参考文献
[1] | 李祥栋, 潘虹, 陆秀娟, 等. 薏苡种质的主要营养组分特征及综合评价[J]. 中国农业科学, 2018, 51(5): 835?850 doi: 10.3864/j.issn.0578-1752.2018.05.003 LI X D, PAN H, LU X J, et al. Characteristics and comprehensive assessment of principal nutritional components in adlay landraces[J]. Scientia Agricultura Sinica, 2018, 51(5): 835?850 doi: 10.3864/j.issn.0578-1752.2018.05.003 |
[2] | 杨荔阳, 易志辉, 林斌, 等. 福建省耕地质量空间自相关分析与耕地保护分区[J]. 中国农业资源与区划, 2018, 39(11): 52?58 YANG L Y, YI Z H, LIN B, et al. Analysis for the characteristics of spatial difference of cultivated land quality in Fujian Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 52?58 |
[3] | 冀拯宇, 周吉祥, 张贺, 等. 不同土壤改良剂对盐碱土壤化学性质和有机碳库的影响[J]. 农业环境科学学报, 2019, 38(8): 1759?1767 doi: 10.11654/jaes.2019-0426 JI Z Y, ZHOU J X, ZHANG H, et al. Effect of soil conditioners on the soil chemical properties and organic carbon pool of saline-sodic soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1759?1767 doi: 10.11654/jaes.2019-0426 |
[4] | 李衍亮, 黄玉芬, 魏岚, 等. 施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J]. 农业环境科学学报, 2017, 36(11): 2233?2239 doi: 10.11654/jaes.2017-0522 LI Y L, HUANG Y F, WEI L, et al. Impacts of biochar application on amelioration of heavy metal-polluted soil and maize growth[J]. Journal of Agro-Environment Science, 2017, 36(11): 2233?2239 doi: 10.11654/jaes.2017-0522 |
[5] | 王光飞, 马艳, 郭德杰, 等. 不同用量秸秆生物炭对辣椒疫病防控效果及土壤性状的影响[J]. 土壤学报, 2017, 54(1): 204?215 doi: 10.11766/trxb201604140027 WANG G F, MA Y, GUO D J, et al. Application-rate-dependent effects of straw biochar on control of Phytophthora blight of chilli pepper and soil properties[J]. Acta Pedologica Sinica, 2017, 54(1): 204?215 doi: 10.11766/trxb201604140027 |
[6] | LAIRD D, FLEMING P, WANG B Q, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 436?442 |
[7] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105: 47?82 |
[8] | 陈坤, 徐晓楠, 彭靖, 等. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10): 1920?1930 doi: 10.3864/j.issn.0578-1752.2018.10.011 CHEN K, XU X N, PENG J, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure[J]. Scientia Agricultura Sinica, 2018, 51(10): 1920?1930 doi: 10.3864/j.issn.0578-1752.2018.10.011 |
[9] | 高梦雨, 江彤, 韩晓日, 等. 施用炭基肥及生物炭对棕壤有机碳组分的影响[J]. 中国农业科学, 2018, 51(11): 2126?2135 doi: 10.3864/j.issn.0578-1752.2018.11.010 GAO M Y, JIANG T, HAN X R, et al. Effects of applying biochar-based fertilizer and biochar on organic carbon fractions and contents of brown soil[J]. Scientia Agricultura Sinica, 2018, 51(11): 2126?2135 doi: 10.3864/j.issn.0578-1752.2018.11.010 |
[10] | 常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24(6): 58?66 CHANG D, MA W H, ZHANG K, et al. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil[J]. Acta Tabacaria Sinica, 2018, 24(6): 58?66 |
[11] | IBRAHIM M M, TONG C X, HU K, et al. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil[J]. Science of the Total Environment, 2020, 739: 140065 doi: 10.1016/j.scitotenv.2020.140065 |
[12] | 何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425?434 HE W, WANG H, HAN F, et al. Effect of long-term application of organic manure expanding organic carbon fractions in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(2): 425?434 |
[13] | 王毅, 张俊清, 况帅, 等. 施用小麦秸秆或其生物炭对烟田土壤理化特性及有机碳组分的影响[J]. 植物营养与肥料学报, 2020, 26(2): 285?294 doi: 10.11674/zwyf.19078 WANG Y, ZHANG J Q, KUANG S, et al. Effects of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-cured tobacco field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 285?294 doi: 10.11674/zwyf.19078 |
[14] | 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721?729 BAO J P, YUAN G S, DONG F Y, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721?729 |
[15] | WANG X P, IBRAHIM M M, TONG C X, et al. Influence of pyrolysis conditions on the properties and Pb2+ and Cd2+ adsorption potential of tobacco stem biochar[J]. BioResources, 2020, 15(2): 4026?4051 doi: 10.15376/biores.15.2.4026-4051 |
[16] | 陈懿, 林英超, 黄化刚, 等. 炭基肥对植烟黄壤性状和烤烟养分积累、产量及品质的影响[J]. 土壤学报, 2019, 56(2): 495?504 doi: 10.11766/trxb201806060133 CHEN Y, LIN Y C, HUANG H G, et al. Effect of biochar-based fertilizer on properties of tobacco-planting yellow soil, and nutrient accumulation, yield and quality of flue-cured tobacco[J]. Acta Pedologica Sinica, 2019, 56(2): 495?504 doi: 10.11766/trxb201806060133 |
[17] | 宋大利, 习向银, 黄绍敏, 等. 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响[J]. 植物营养与肥料学报, 2017, 23(2): 369?379 doi: 10.11674/zwyf.16399 SONG D L, XI X Y, HUANG S M, et al. Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 369?379 doi: 10.11674/zwyf.16399 |
[18] | DEMISIE W, LIU Z Y, ZHANG M K. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214?221 doi: 10.1016/j.catena.2014.05.020 |
[19] | 刘园, M. Jamal Khan, 靳海洋, 等. 秸秆生物炭对潮土作物产量和土壤性状的影响[J]. 土壤学报, 2015, 52(4): 849?858 LIU Y, KHAN M J, JIN H Y, et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J]. Acta Pedologica Sinica, 2015, 52(4): 849?858 |
[20] | IBRAHIM M M, HU K, TONG C X, et al. De-ashed biochar enhances nitrogen retention in manured soil and changes soil microbial dynamics[J]. Geoderma, 2020, 378: 114589 doi: 10.1016/j.geoderma.2020.114589 |
[21] | 周际海, 郜茹茹, 魏倩, 等. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异[J]. 水土保持学报, 2020, 34(1): 327?332 ZHOU J H, GAO R R, WEI Q, et al. Effects of different land use patterns on enzyme activities and microbial diversity in upland red soil[J]. Journal of Soil and Water Conservation, 2020, 34(1): 327?332 |
[22] | 周玉祥, 宋子岭, 孔涛, 等. 不同秸秆生物炭对露天煤矿排土场土壤微生物数量和酶活性的影响[J]. 环境化学, 2017, 36(1): 106?113 doi: 10.7524/j.issn.0254-6108.2017.01.2016041703 ZHOU Y X, SONG Z L, KONG T, et al. Effect of straw biochar on soil microbe number and soil enzyme activities in opencast coal mine dump[J]. Environmental Chemistry, 2017, 36(1): 106?113 doi: 10.7524/j.issn.0254-6108.2017.01.2016041703 |
[23] | 陈心想, 耿增超, 王森, 等. 施用生物炭后土土壤微生物及酶活性变化特征[J]. 农业环境科学学报, 2014, 33(4): 751?758 doi: 10.11654/jaes.2014.04.019 CHEN X X, GENG Z C, WANG S, et al. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil[J]. Journal of Agro-Environment Science, 2014, 33(4): 751?758 doi: 10.11654/jaes.2014.04.019 |
[24] | OLESZCZUK P, JO?KO I, FUTA B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214/215: 10?18 doi: 10.1016/j.geoderma.2013.10.010 |
[25] | CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33?44 doi: 10.1016/j.apsoil.2013.05.003 |
[26] | 陈懿, 吴春, 李彩斌, 等. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响[J]. 微生物学报, 2020, 60(4): 653?666 CHEN Y, WU C, LI C B, et al. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil[J]. Acta Microbiologica Sinica, 2020, 60(4): 653?666 |
[27] | FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 2013, 465: 288?297 doi: 10.1016/j.scitotenv.2013.03.090 |
[28] | MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226/227: 270?278 doi: 10.1016/j.geoderma.2014.01.023 |
[29] | NIELSEN S, MINCHIN T, KIMBER S, et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers[J]. Agriculture, Ecosystems & Environment, 2014, 191: 73?82 |
[30] | 徐民民, 黄莹, 李波, 等. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516?525 XU M M, HUANG Y, LI B, et al. Effect of biochar on wheat root-associated microbial community structures[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516?525 |
[31] | 马晓英, 马琨, 周艳, 等. 土壤细菌群落组成对有机与无机培肥措施的响应[J]. 西北农业学报, 2019, 28(10): 1698?1707 MA X Y, MA K, ZHOU Y, et al. Response of soil bacteria community structure to application of inorganic and organic fertilizer[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1698?1707 |
[32] | 王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363?1372 WANG M Y, HOU S Z, DONG T, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil[J]. Acta Microbiologica Sinica, 2019, 59(7): 1363?1372 |
[33] | 赵文慧, 马垒, 徐基胜, 等. 秸秆与木本泥炭短期施用对潮土有机质及微生物群落组成和功能的影响[J]. 土壤学报, 2020, 57(1): 153?164 ZHAO W H, MA L, XU J S, et al. Effect of application of straw and wood peat for a short period on soil organic matter and microbial community in composition and function in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(1): 153?164 |
[34] | 杜思瑶, 于淼, 刘芳华, 等. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 2017, 25(11): 1615?1625 DU S Y, YU M, LIU F H, et al. Effect of facility management regimes on soil bacterial diversity and community structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1615?1625 |
[35] | 樊鹏飞, 刘文, 任天宝, 等. 滴灌减氮下生物炭基肥对植烟土壤无机氮组分含量的影响[J]. 河南农业大学学报, 2020, 54(5): 740?747, 761 FAN P F, LIU W, REN T B, et al. Effects of biochar-based organic fertilizer on inorganic nitrogen composition in tobacco-growing soil under drip irrigation[J]. Journal of Henan Agricultural University, 2020, 54(5): 740?747, 761 |
[36] | 莫永亮, 郑燕, 金凤, 等. 内蒙古岗更诺尔湖泊退化情景下好氧甲烷氧化的微生物过程研究[J]. 微生物学报, 2019, 59(6): 1105?1115 MO Y L, ZHENG Y, JIN F, et al. Aerobic methane oxidation under distinct shrinkage scenario of Lake Ganggeng in Inner Mongolia Autonomous Region[J]. Acta Microbiologica Sinica, 2019, 59(6): 1105?1115 |
[37] | 周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报: 自然科学版, 2016, 40(6): 1?8 ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2016, 40(6): 1?8 |
[38] | 胡华英, 殷丹阳, 曹升, 等. 生物炭对杉木人工林土壤养分、酶活性及细菌性质的影响[J]. 生态学报, 2019, 39(11): 4138?4148 HU H Y, YIN D Y, CAO S, et al. Effects of biochar on soil nutrient, enzyme activity, and bacterial properties of Chinese fir plantation[J]. Acta Ecologica Sinica, 2019, 39(11): 4138?4148 |