屈杰,
王晓雯,
郑文魁,
李成亮,
刘艳丽,
土肥资源高效利用国家工程实验室/山东农业大学资源与环境学院 泰安 271018
基金项目: 国家自然科学基金项目42077006
国家重点研发计划项目2018YFD0200604
详细信息
作者简介:孙瀚, 主要从事土肥资源管理与高效利用的研究。E-mail: ally123sh@163.com
通讯作者:刘艳丽, 主要从事土壤肥力保持与施肥效应方面的相关研究。E-mail: yanliliu2013@163.com
中图分类号:S153.6计量
文章访问数:92
HTML全文浏览量:21
PDF下载量:24
被引次数:0
出版历程
收稿日期:2021-01-03
录用日期:2021-04-22
刊出日期:2021-08-01
The response of soil organic nitrogen fractions and nitrogen availability to salinity in saline soils of the Yellow River Delta
SUN Han,QU Jie,
WANG Xiaowen,
ZHENG Wenkui,
LI Chengliang,
LIU Yanli,
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources/College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
Funds: the National Natural Science Foundation of China42077006
the National Key Research and Development Program of China2018YFD0200604
More Information
Corresponding author:LIU Yanli, E-mail: yanliliu2013@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土壤盐分胁迫下有机氮组成及氮有效性对黄河三角洲盐渍土壤肥力的形成和生产力的提高具有重要作用。本研究采集黄河三角洲盐渍土壤区小麦-玉米轮作的3种盐渍土壤,分别为轻度盐渍土(含盐量2.28 g·kg-1,S1)、中度盐渍土(含盐量3.73 g·kg-1,S2)和重度盐渍土(含盐量6.69 g·kg-1,S3),分析不同盐分含量土壤的作物产量和土壤有机氮组分含量、无机氮含量、微生物生物量氮含量及相关酶活性等指标的变异特征,明确盐分含量对土壤有机氮组成及氮有效性的影响。结果表明:3种土壤中有机氮的酸解总氮含量是有机氮的主要组分,S1、S2和S3处理下分别占土壤总有机氮68.79%、61.60%和52.30%;不同处理下各形态含量酸解总氮为酸解铵态氮>酸解未知氮>酸解氨基酸氮>酸解氨基糖氮,且各形态含量均以S1处理显著高于S2和S3处理(P < 0.05)。非酸解氮含量在3种处理间差异不显著,且均低于酸解总氮含量,其占全氮比例随土壤含盐量增加而提高。S1处理土壤硝态氮含量(22.08 mg·kg-1)和微生物生物量氮含量(20.71 mg·kg-1)最高,显著高于其他两种处理的土壤(P < 0.05);铵态氮含量在各处理下差异不显著。S1处理的小麦、玉米总产量分别是S2和S3的1.74倍和5.85倍。回归分析发现土壤可溶性全盐含量分别与土壤无机氮、微生物生物量氮含量呈显著的负指数关系,与小麦、玉米总产量、氨基酸态氮含量之间存在显著的负线性关系。土壤无机氮含量与土壤酸解总氮含量之间呈显著的正指数关系。土壤中较高含量的可溶性全盐抑制土壤酸解有机氮的形成及氮素有效性的提高。
关键词:盐渍土壤/
小麦-玉米轮作/
土壤无机氮/
土壤有机氮/
土壤微生物生物量氮/
土壤可溶性全盐
Abstract:The soil organic nitrogen composition and nitrogen availability play important roles in the soil fertility and agricultural production of saline soils. This study investigated the effects of soil salinity on soil organic nitrogen fractionation and nitrogen availability in saline soils of the Yellow River Delta (YRD). Soil samples were taken from three wheat-maize rotation fields with low (2.28 g·kg-1, S1), moderate (3.73 g·kg-1, S2), and high (6.69 g·kg-1, S3) salinities on the Huibang Bohai Farm in the YRD. The crop yields were recorded, and the soil organic nitrogen fractions, including ammonia nitrogen (AN), amino acid nitrogen (AAN), amino sugar nitrogen (ASN), hydrolyzable unknown nitrogen (HUN), non-hydrolyzable nitrogen (NHN), soil inorganic nitrogen, and microbial biomass nitrogen were quantified. The activities of the nitrogen transformation-related enzymes (i.e., urease, protease, and nitrate reductase) were determined, and the relationships between the soil organic nitrogen fractions, inorganic nitrogen, crop yield, and soil salinity were analyzed. The results showed that total acid hydrolyzable nitrogen (TAHN), which is the sum of AN, AAN, ASN, and HUN, was the main fractions of soil organic nitrogen, taking up 68.79%, 61.60%, and 52.30% of the total organic nitrogen in S1, S2, and S3 soils, respectively. The contents of the four TAHN fractions (AN, AAN, ASN, and HUN) were all significantly higher in S1 than in S2 and S3 (P < 0.05), and the contents of AN, AAN, and HUN were all significantly higher in S2 than in S3 (P < 0.05). The contents of these fractions were AN > HUN > AAN > ASN in S1, and AN > AAN > HUN > ASN in S2 and S3. Conversely, the NHN content was in the order of S1 > S2 > S3, but the differences were not significant (P>0.05). For the same soil, the NHN content was lower than the TAHN content. The highest soil nitrate nitrogen content (22.08 mg·kg-1) and microbial biomass nitrogen (20.71 mg·kg-1) were found in S1, which was significantly higher than those in S2 and S3 (P < 0.05). The ammonium nitrogen content did not differ among the three soils. The activities of urease and nitrate reductase were in the order of S1 > S2 > S3, and the differences were significant (P < 0.05). Protease activity was significantly higher in S1 than in S2 and S3 (P < 0.05). The total yield of wheat and maize in S1 was 1.74 times of that in S2 and 5.85 times of that in S3. Correlation analyses showed that the inorganic nitrogen, microbial biomass nitrogen, AN, and HUN contents had negative exponential relationships with the soil total soluble salt content, whereas the total yield of wheat and maize and the AAN content had significant negative linear relationships with the soil total soluble salt content. The soil inorganic nitrogen content was significantly and positively correlated with the soil TAHN content. The high total soluble salt content in the soils inhibited the formation of acid hydrolyzable organic nitrogen and improved the soil nitrogen availability. These results provide theoretical support for the regulation of soil nitrogen availability in saline soils in the YRD.
Key words:Saline soil/
Wheat-maize rotation/
Soil inorganic nitrogen/
Soil organic nitrogen/
Soil microbial biomass nitrogen/
Total soluble salt in soil
HTML全文
图1不同盐渍土壤硝态氮和铵态氮含量
S1: 轻度盐渍土壤; S2: 中度盐渍土壤; S3: 重度盐渍土壤。不同小写字母表示不同土壤间差异显著(P < 0.05)。
Figure1.Contents of nitrate and ammonium nitrogen in soils with different salinity levels
S1: low salinity soil; S2: moderate salinity soil; S3: high salinity soil. Different lowercase letters indicate significant differences among soils at P < 0.05 level.
下载: 全尺寸图片幻灯片
表1不同盐渍土壤部分理化性质与小麦玉米产量
Table1.Partial soil characteristics and yield of wheat and maize in soils with different salinity levels
土样 Soil | 可溶性全盐 Total soluble salt (g?kg–1) | pH | 有机碳 Organic carbon (g?kg–1) | 小麦产量 Wheat yield (kg?hm–2) | 玉米产量 Maize yield (kg?hm–2) |
S1 | 2.28±0.32c | 8.45±0.02c | 8.59±0.16a | 7260±197a | 3678±227a |
S2 | 3.73±0.26b | 8.87±0.02b | 6.32±0.37b | 3420±164b | 2875±214b |
S3 | 6.69±0.51a | 9.02±0.02a | 5.16±0.32c | 1868±117c | 0c |
S1: 轻度盐渍土壤; S2: 中度盐渍土壤; S3: 重度盐渍土壤。同列数据后不同小写字母表示不同土壤间差异显著(P < 0.05)。S1: low salinity soil; S2: moderate salinity soil; S3: high salinity soil. Different lowercase letters in the same column indicate significant differences among soils at P < 0.05 level. |
下载: 导出CSV
表2不同盐渍土壤全氮与有机氮及其各组分含量
Table2.Contents of total nitrogen and organic nitrogen and its' components in soils with different salinity levels
土样 Soil | 全氮 Total N (g?kg–1) | 酸解铵态氮 Acidolysis ammonia N (mg?kg–1) | 酸解氨基酸氮 Acidolysis amino acidic N (mg?kg–1) | 酸解氨基糖氮 Acidolysis amino sugar N (mg?kg–1) | 酸解未知氮 Hydrolysable unknown N (mg?kg–1) | 酸解总氮 Total acid hydrolysable N (mg?kg–1) | 非酸解氮 Non-hydrolysable N (mg?kg–1) |
S1 | 1.04±0.01a | 272.48±10.12a | 134.34±1.80a | 61.22±4.85a | 247.33±3.50a | 715.37±9.84a | 318.72±3.38a |
S2 | 0.80±0.01b | 221.84±4.56b | 115.30±7.33b | 46.81±3.04b | 108.85±9.95b | 492.79±8.81b | 306.26±9.58a |
S3 | 0.63±0.01c | 140.81±1.76c | 83.33±4.76c | 39.51±3.12b | 65.86±4.06c | 329.51±7.46c | 299.98±4.07a |
S1: 轻度盐渍土壤; S2: 中度盐渍土壤; S3: 重度盐渍土壤。同列数据后不同小写字母表示不同土壤间差异显著(P < 0.05)。S1: low salinity soil; S2: moderate salinity soil; S3: high salinity soil. Different lowercase letters in the same column indicate significant differences among soils at P < 0.05 level. |
下载: 导出CSV
表3不同盐渍土壤微生物生物量氮含量与酶活性
Table3.Microbial biomass nitrogen contents and enzymes activities in soils with different salinity levels
土样 Soil | 脲酶活性 Urease activity (mg?g–1?d–1) | 蛋白酶活性 Protease activity (μg?g–1?d–1) | 硝酸还原酶活性 Nitrate reductase activity (mg?g–1?d–1) | 微生物生物量氮含量 Microbial biomass N content (mg?kg–1) | |
S1 | 1.26±0.13a | 38.68±0.33a | 0.19±0.01a | 20.71±1.53a | |
S2 | 0.66±0.01b | 34.97±1.81b | 0.17±0.01b | 15.68±1.37b | |
S3 | 0.42±0.04c | 31.73±1.49b | 0.13±0.01c | 9.33±1.12c | |
S1: 轻度盐渍土壤; S2: 中度盐渍土壤; S3: 重度盐渍土壤。同列数据后不同小写字母表示不同土壤间差异显著(P < 0.05)。S1: low salinity soil; S2: moderate salinity soil; S3: high salinity soil. Different lowercase letters in the same column indicate significant differences among soils at P < 0.05 level. |
下载: 导出CSV
表4盐渍土壤不同形态氮含量与土壤酶、微生物生物量氮含量的相关关系
Table4.Correlation among soil microbial biomass nitrogen content, enzymes activities and contents of nitrogen components in saline soils
${\rm{NO}}_3^ - {\rm{ - N}}$ | ${\rm{NH}}_{\rm{4}}^{\rm{ + }}{\rm{ - N}}$ | 酸解铵 态氮 Acidolysis ammonia N | 酸解氨基 酸氮 Acidolysis amino acidic N | 酸解氨基 糖氮 Acidolysis amino sugar N | 酸解未知氮 Hydrolysable unknown N | 非酸解氮 Non- hydrolysable N | 微生物生物量氮 Microbial biomass N | 脲酶 Urease | 蛋白酶 Protease | 硝酸 还原酶 Nitrate reductase | |
${\rm{NO}}_3^ - {\rm{ - N}}$ | 1.000 | –0.455 | 0.748** | 0.148 | 0.193 | 0.794** | 0.576 | 0.986** | 0.951** | 0.629 | 0.933** |
${\rm{NH}}_{\rm{4}}^{\rm{ + }}{\rm{ - N}}$ | 1.000 | –0.135 | 0.216 | 0.014 | –0.315 | –0.399 | –0.052 | –0.372 | –0.151 | 0.005 | |
酸解铵态氮 Ammonia N | 1.000 | 0.947** | 0.735* | 0.887** | 0.636 | 0.952** | 0.881** | 0.698* | 0.614* | ||
酸解氨基酸氮 Amino acidic N | 1.000 | 0.736* | 0.798* | 0.720* | 0.774** | 0.388 | 0.705* | 0.858** | |||
酸解氨基糖氮 Acidolysis amino sugar N | 1.000 | 0.854** | 0.390 | 0.771** | 0.441 | 0.771* | 0.709** | ||||
酸解未知氮 Hydrolysable unknown N | 1.000 | 0.558 | 0.855** | 0.900** | 0.689* | 0.479 | |||||
非酸解氮 Non- hydrolysable N | 1.000 | 0.528 | 0.622 | 0.507 | 0.556 | ||||||
微生物生物量氮 Microbial biomass N | 1.000 | 0.804** | 0.819** | 0.711** | |||||||
脲酶 Urease | 1.000 | 0.545 | 0.328 | ||||||||
蛋白酶 Protease | 1.000 | 0.613 | |||||||||
硝酸还原酶 Nitrate reductase | 1.000 | ||||||||||
*、**分别表示在P < 5%和P < 1%水平相关性显著。* and ** indicate significant correlations at P < 0.05 and P < 0.01 levels, respectively (n=15). |
下载: 导出CSV
表5不同盐渍土壤可溶性全盐含量与相关指标的回归拟合模型
Table5.Regression model between the content of soil total soluble salt and correlative indexes in saline soils
因变量 Dependent variable (Y) | 自变量 Independent variable (X) | 回归方程 Regression equation | 决定系数R2 Coefficient of determination |
小麦玉米总产量Total yield of wheat and maize | 土壤可溶性全盐 Soil total soluble salt | Y=14759–1954X | 0.8940 |
酸解总氮Total acid hydrolysable N | Y=861.55–81.82X | 0.9090 | |
氨态氮Ammonia N | Y=382.68e–0.15X | 0.9627 | |
氨基酸态氮Amino acidic N | Y=157.70–10.95X | 0.8261 | |
氨基糖态氮Amino sugar N | Y=71.774e–0.094X | 0.6802 | |
未知态氮Hydrolysable unknown N | Y=401.32e–0.28X | 0.8664 | |
微生物生物量氮Microbial biomass N | Y=8.84+52.95e–0.75X | 0.8411 | |
无机氮含量Inorganic-N | Y=20.79+50.60e–0.75X | 0.8109 | |
无机氮含量Inorganic-N | 酸解总氮 Total acid hydrolysable N | Y=20.20+0.17e0.0057X | 0.9110 |
下载: 导出CSV
参考文献
[1] | 吕真真, 刘广明, 杨劲松, 等. 黄河三角洲滨海盐渍土区土壤质量综合评价[J]. 干旱地区农业研究, 2015, 33(6): 93-97 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201506018.htm LYU Z Z, LIU G M, YANG J S, et al. Synthetic evaluation of soil quality of the coastal saline soil in Yellow River Delta Area[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 93-97 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201506018.htm |
[2] | 范晓梅, 刘高焕, 唐志鹏, 等. 黄河三角洲土壤盐渍化影响因素分析[J]. 水土保持学报, 2010, 24(1): 139-144 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201001033.htm FAN X M, LIU G H, TANG Z P, et al. Analysis on main contributors influencing soil salinization of Yellow River Delta[J]. Journal of Soil and Water Conservation, 2010, 24(1): 139-144 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201001033.htm |
[3] | POST W M, PASTOR J, ZINKE P J, et al. Global patterns of soil nitrogen storage[J]. Nature, 1985, 317(6038): 613-616 doi: 10.1038/317613a0 |
[4] | 南镇武, 刘树堂, 袁铭章, 等. 长期定位施肥土壤硝态氮和铵态氮积累特征及其与玉米产量的关系[J]. 华北农学报, 2016, 31(2): 176-181 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201602033.htm NAN Z W, LIU S T, YUAN M Z, et al. Characteristics of nitrate nitrogen and ammonium nitrogen accumulation in soil and its relationship with maize yield on long-term located fertilization[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(2): 176-181 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201602033.htm |
[5] | 张玉玲, 陈温福, 虞娜, 等. 不同利用方式下土壤有机氮素矿化特征的研究[J]. 土壤通报, 2013, 44(1): 52-56 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201301011.htm ZHANG Y L, CHEN W F, YU N, et al. Long-term effects of different land use patterns on mineralizing characteristic of soil organic nitrogen[J]. Chinese Journal of Soil Science, 2013, 44(1): 52-56 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201301011.htm |
[6] | 党亚爱, 王国栋, 李世清. 黄土高原典型土壤有机氮组分剖面分布的变化特征[J]. 中国农业科学, 2011, 44(24): 5021-5030 doi: 10.3864/j.issn.0578-1752.2011.24.007 DANG Y A, WANG G D, LI S Q. The changing characteristics of profile distribution of soil organic nitrogen component of the typical soil types on the loess plateau[J]. Scientia Agricultura Sinica, 2011, 44(24): 5021-5030 doi: 10.3864/j.issn.0578-1752.2011.24.007 |
[7] | 李紫燕, 李世清, 李生秀. 黄土高原典型土壤有机氮矿化过程[J]. 生态学报, 2008, 28(10): 4940-4950 doi: 10.3321/j.issn:1000-0933.2008.10.039 LI Z Y, LI S Q, LI S X. Organic N mineralization in typical soils of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(10): 4940-4950 doi: 10.3321/j.issn:1000-0933.2008.10.039 |
[8] | 李贤红, 陈为峰, 宋希亮, 等. 垦殖对黄河三角洲盐渍土碳氮分布特征的影响[J]. 土壤学报, 2018, 55(4): 1018-1027 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201804023.htm LI X H, CHEN W F, SONG X L, et al. Effects of reclamation on distribution of soil carbon and nitrogen in saline soil of the Yellow River Delta[J]. Acta Pedologica Sinica, 2018, 55(4): 1018-1027 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201804023.htm |
[9] | ELGHARABLY A, MARSCHNER P. Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues[J]. European Journal of Soil Biology, 2011, 47(5): 310-315 doi: 10.1016/j.ejsobi.2011.07.005 |
[10] | DORAN J W, COLEMAN D C, BEZDICEK D F, et al. Soil enzyme activities as indicators of soil quality[J]. Soil Science Society of America Journal, 1994, 58: 107-124 http://dl.sciencesocieties.org/publications/books/abstracts/sssaspecialpubl/definingsoilqua/107 |
[11] | 王小纯, 李高飞, 安帅, 等. 氮素形态对中后期小麦根际土壤氮转化微生物及酶活性的影响[J]. 水土保持学报, 2010, 24(6): 204-207, 245 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201006043.htm WANG X C, LI G F, AN S, et al. Effects of nitrogen forms on rhizosphere microorganisms and soil enzyme activity for nitrogen transform of wheat cultivar during elongation and grain filling stage[J]. Journal of Soil and Water Conservation, 2010, 24(6): 204-207, 245 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201006043.htm |
[12] | 文佩. 黄河三角洲盐渍化土壤氮转化过程及冬小麦幼苗氮利用研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2018 WEN P. Study on nitrogen transformation and effects of nitrogen on winter wheat seedlings growth in saline soil in Yellow River Delta[D]. Yantai: University of Chinese Academy of Sciences (Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences), 2018 |
[13] | 周玲玲, 孟亚利, 王友华, 等. 盐胁迫对棉田土壤微生物数量与酶活性的影响[J]. 水土保持学报, 2010, 24(2): 241-246 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201002052.htm ZHOU L L, MENG Y L, WANG Y H, et al. Effects of salinity stress on cotton field soil microbe quantity and soil enzyme activity[J]. Journal of Soil and Water Conservation, 2010, 24(2): 241-246 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201002052.htm |
[14] | 王飞, 禇贵新, 杨明凤, 等. 北疆绿洲不同盐分浓度梯度下土壤的生物活性及其功能多样性[J]. 土壤通报, 2012, 43(3): 621-626 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201203020.htm WANG F, CHU G X, YANG M F, et al. Soil biological activity and its functional diversity along with salinity gradient in oasis of northern Xinjiang[J]. Chinese Journal of Soil Science, 2012, 43(3): 621-626 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201203020.htm |
[15] | 李玲, 仇少君, 檀菲菲, 等. 盐分和底物对黄河三角洲区土壤有机碳分解与转化的影响[J]. 生态学报, 2013, 33(21): 6844-6852 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201321010.htm LI L, QIU S J, TAN F F, et al. Effects of salinity and exogenous substrates on the decomposition and transformation of soil organic carbon in the Yellow River Delta[J]. Acta Ecologica Sinica, 2013, 33(21): 6844-6852 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201321010.htm |
[16] | 张唤, 黄立华, 王鸿斌, 等. 不同盐碱化草地土壤微生物差异及其与盐分和养分的关系[J]. 吉林农业大学学报, 2016, 38(6): 703-709 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201606012.htm ZHANG H, HUANG L H, WANG H B, et al. Differences of soil microbes in different saline-sodic grasslands and their relations with soil salinity and nutrients[J]. Journal of Jilin Agricultural University, 2016, 38(6): 703-709 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201606012.htm |
[17] | 胡国庆, 刘肖, 何红波, 等. 黄河三角洲不同盐渍化土壤中氨基糖的积累特征[J]. 土壤学报, 2018, 55(2): 390-398 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802013.htm HU G Q, LIU X, HE H B, et al. Accumulation characteristics of amino sugars in salinized soils of different types in the Yellow River Delta[J]. Acta Pedologica Sinica, 2018, 55(2): 390-398 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802013.htm |
[18] | 张玉玲, 陈温福, 虞娜, 等. 东北地区滨海盐渍土型稻田土壤有机氮组分的研究[J]. 土壤通报, 2012, 43(5): 1167-1172 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201205025.htm ZHANG Y L, CHEN W F, YU N, et al. Studies on organic nitrogen forms of coastal saline paddy soil in northeast China[J]. Chinese Journal of Soil Science, 2012, 43(5): 1167-1172 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201205025.htm |
[19] | 丛耀辉, 张玉玲, 张玉龙, 等. 黑土区水稻土有机氮组分及其对可矿化氮的贡献[J]. 土壤学报, 2016, 53(2): 457-467 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602018.htm CONG Y H, ZHANG Y L, ZHANG Y L, et al. Soil organic nitrogen components and their contributions to mineralizable nitrogen in paddy soil of the black soil region[J]. Acta Pedologica Sinica, 2016, 53(2): 457-467 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201602018.htm |
[20] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 85, 157-163 LU R K. Methods of Soil Agrochemical Analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000: 85, 157-163 |
[21] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 BAO S D. Soil Agrochemical Analysis[M]. Beijing: China Agricultural Publishing House, 2000 |
[22] | WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169 doi: 10.1016/0038-0717(90)90046-3 |
[23] | BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842 doi: 10.1016/0038-0717(85)90144-0 |
[24] | 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2007 YAO H Y, HUANG C Y. Soil Microbial Ecology and its Experimental Techniques[M]. Beijing: Science Press, 2006 |
[25] | BREMNER J M. Nitrogen Availability Indexes[M]. Agronomy Monographs. Madison, WI, USA: American Society of Agronomy, Soil Science Society of America, 1965: 1324-1345 |
[26] | 李玲, 仇少君, 陈印平, 等. 黄河三角洲区土壤活性氮对盐分含量的响应[J]. 环境科学, 2014, 35(6): 2358-2364 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201406048.htm LI L, QIU S J, CHEN Y P, et al. Response of active nitrogen to salinity in a soil from the Yellow River Delta[J]. Environmental Science, 2014, 35(6): 2358-2364 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201406048.htm |
[27] | LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility: Ⅰ. Theory and methodology[J]. European Journal of Soisl Science, 2016, 67(1): 11-21 doi: 10.1111/ejss.4_12311/full |
[28] | 王晋, 庄舜尧, 朱兆良. 不同种植年限水田与旱地土壤有机氮组分变化[J]. 土壤学报, 2014, 51(2): 286-294 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201402010.htm WANG J, ZHUANG S Y, ZHU Z L. Fractions of soil organic nitrogen in paddy and upland soils relative to cropping history[J]. Acta Pedologica Sinica, 2014, 51(2): 286-294 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201402010.htm |
[29] | 路海玲. 土壤盐分对棉田土壤微生物活性和土壤肥力的影响[D]. 南京: 南京农业大学, 2011 LU H L. Effects of salinity on soil microbial activity and soil fertility in cotton field[D]. Nanjing: Nanjing Agricultural University, 2011 |
[30] | 郝小雨, 马星竹, 高中超, 等. 长期施肥下黑土活性氮和有机氮组分变化特征[J]. 中国农业科学, 2015, 48(23): 4707-4716 doi: 10.3864/j.issn.0578-1752.2015.23.012 HAO X Y, MA X Z, GAO Z C, et al. Variation characteristics of fractions of active nitrogen and organic nitrogen under different long-term fertilization practices in black soil[J]. Scientia Agricultura Sinica, 2015, 48(23): 4707-4716 doi: 10.3864/j.issn.0578-1752.2015.23.012 |
[31] | 郝晓晖, 刘守龙, 童成立, 等. 长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响[J]. 中国农业科学, 2007, 40(4): 757-764 doi: 10.3321/j.issn:0578-1752.2007.04.015 HAO X H, LIU S L, TONG C L, et al. The influence of long-term fertilization on microbial biomass nitrogen and organic nitrogen fractions in paddy soil[J]. Scientia Agricultura Sinica, 2007, 40(4): 757-764 doi: 10.3321/j.issn:0578-1752.2007.04.015 |
[32] | 李世清, 李生秀, 邵明安, 等. 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J]. 中国农业科学, 2004, 37(6): 859-864 doi: 10.3321/j.issn:0578-1752.2004.06.013 LI S Q, LI S X, SHAO M A, et al. Effects of long-term application of fertilizers on soil organic nitrogen components and microbial biomass nitrogen in semiarid farmland ecological system[J]. Scientia Agricultura Sinica, 2004, 37(6): 859-864 doi: 10.3321/j.issn:0578-1752.2004.06.013 |
[33] | 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903003.htm WANG J K, XU Y D, DING F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review[J]. Acta Pedologica Sinica, 2019, 56(3): 528-540 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903003.htm |
[34] | KAMIMURA Y, HAYANO K. Properties of protease extracted from tea-field soil[J]. Biology and Fertility of Soils, 2000, 30(4): 351-355 doi: 10.1007/s003740050015 |
[35] | 张威, 张明, 张旭东, 等. 土壤蛋白酶和芳香氨基酶的研究进展[J]. 土壤通报, 2008, 39(6): 1468-1474 doi: 10.3321/j.issn:0564-3945.2008.06.050 ZHANG W, ZHANG M, ZHANG X D, et al. A review on soil protease and arylamidase[J]. Chinese Journal of Soil Science, 2008, 39(6): 1468-1474 doi: 10.3321/j.issn:0564-3945.2008.06.050 |
[36] | 李建兵, 黄冠华. 盐分对粉壤土氮转化的影响[J]. 环境科学研究, 2008, 21(5): 98-103 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200805017.htm LI J B, HUANG G H. Pilot study of salinity (NaCl) affecting nitrogen transformation in silt loam soil[J]. Research of Environmental Sciences, 2008, 21(5): 98-103 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200805017.htm |