删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄土高原旱作麦田土壤真菌多样性对长期保护性耕作的响应

本站小编 Free考研考试/2022-01-01

吕贝贝,
张丽萍,
张贵云,,
刘珍,
范巧兰,
姚众,
常芳娟
山西农业大学棉花研究所 运城 044000
基金项目: 山西省农业科学院农业科技创新研究课题YGJPY1912
山西省农业科学院农业科技创新研究课题YCX2018D2YS09

详细信息
作者简介:吕贝贝, 主要从事植物营养学和农作物病虫害综合治理等研究。E-mail: 1240651061@qq.com
通讯作者:张贵云, 主要从事植物营养学和菌根学研究。E-mail: guiyunzhang@126.com
中图分类号:S154.3

计量

文章访问数:87
HTML全文浏览量:17
PDF下载量:26
被引次数:0
出版历程

收稿日期:2020-10-12
录用日期:2021-02-28
刊出日期:2021-07-01

Response of soil fungal diversity to long-term conservation tillage in dryland wheat soils on the Loess Plateau, China

LYU Beibei,
ZHANG Liping,
ZHANG Guiyun,,
LIU Zhen,
FAN Qiaolan,
YAO Zhong,
Chang Fangjuan
Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
Funds: the Agricultural Science and Technology Innovation Project of Shanxi Academy of Agricultural SciencesYGJPY1912
the Agricultural Science and Technology Innovation Project of Shanxi Academy of Agricultural SciencesYCX2018D2YS09

More Information
Corresponding author:ZHANG Guiyun, E-mail: guiyunzhang@126.com


摘要
HTML全文
(4)(2)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:农业管理实践会干扰土壤生态系统,对土壤微生物特别是根系周围微生物产生不同影响,保护性耕作被认为是对土壤扰动较小的耕作方式,在全球范围内应用广泛,但其可持续性受到了秸秆覆盖可能会增加土壤病原微生物的挑战,对土壤微生物多样性的影响仍存在争议。因此,为全面了解黄土高原旱作麦田长期保护性耕作对土壤生态系统的影响,本研究依托山西省临汾市长达27年的保护性耕作试验平台,采用高通量测序技术,开展了土壤真菌群落结构和多样性对传统耕作(TT1)、免耕覆盖(NTS)、深松+免耕覆盖(SNTS)的响应分析。结果表明:与TT1相比,NTS和SNTS处理小麦根围土壤真菌组成及相对丰度发生了显著变化,NTS处理出现了未知真菌类群;各处理土壤真菌的主要优势菌门为子囊菌门、担子菌门和接合菌门;从属水平物种分布热图可以看出,与传统耕作相比,该地区多年的保护性耕作会加大小麦赤霉病发生的风险;UPGMA(非加权组平均法)分析表明,2种保护性耕作土壤真菌群落组成相似;TT1中具有显著差异的关键优势物种属担子菌门,NTS和SNTS处理的属子囊菌门;NTS处理土壤真菌丰富度和系统发育多样性最高,SNTS处理土壤真菌多样性最高;但土壤真菌多样性和丰富度指数在各处理间并无显著差异。综上,长期保护性耕作显著改变了土壤真菌群落结构及组成,提高了土壤真菌的丰富度和多样性,但不存在显著差异。同时该地区多年的保护性耕作可能会加大小麦赤霉病发生的风险。本研究对黄土高原旱作麦田区推广保护性耕作及土壤管理具有一定的指导意义。
关键词:保护性耕作/
小麦/
秸秆覆盖/
土壤真菌/
多样性/
高通量测序
Abstract:Different agricultural tillage practices create variable soil ecosystems that have different effects on soil microorganisms, especially those around the root system. Conservation tillage has numerous advantages and is used worldwide, but its sustainability has been challenged by the increase in soil pathogenic microorganisms caused by stubble mulching. To better understand the effects of long-term conservation tillage on the soil ecosystems in the dryland wheat regions of the Loess Plateau, this study used data from a 27-year conservation tillage experimental platform in Linfen, Shanxi Province, and high-throughput sequencing technology to investigate the response of the soil fungal community structure and diversity to different tillage treatments, including traditional tillage (TT1), no-tillage with stubble (NTS), and no-tillage with stubble after subsoiling (SNTS). The results showed that there were considerable differences in the composition and relative abundances of soil fungi among three treatments, and the NTS treatment included some unidentified or unknown fungi. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla of soil fungi in each treatment. Compared with TT1, the relative abundances of Ascomycota, Zygomycota, Chytridiomycota, and Glomeromycota increased under the two conservation tillage treatments, whereas the relative abundance of Basidiomycota significantly decreased. According to the heat map of species distribution at the genus level, the relative abundances of Gibberella and Fusarium increased compared to TT1 treatment, and Gibberella was the dominant genus under the two conservation tillage treatments. This indicated that long-term conservation tillage may increase the risk of wheat scab in this area. UPGMA (unweighted pair-group method with arithmetic means) showed that the soil fungal community composition was similar between the two conservation tillage treatments, which differed from the TT1 treatment. The key biomarker in the TT1 treatment belonged to Basidiomycota, whereas the key biomarkers belonged to Ascomycota for the NTS and SNTS treatments. The NTS treatment had the highest richness and PD_whole_tree of soil fungi, whereas the SNTS treatment had the highest diversity. However, there were no significant differences in the diversity and richness indices of soil fungi among three treatments. In conclusion, long-term conservation tillage significantly changed the structure and composition of soil fungal communities, and improved the richness and diversity of soil fungi with no significant differences among three treatments. Conservation tillage (for 27 years) may also increase the risk of wheat scab. Therefore, to minimize soil pathogens, appropriate stubble mulching frequency, no-tillage, conventional tillage or subsoiling rotation, and moderate shallow tillage should be examined in future soil management and conservation tillage studies. This study provides guidance for promoting conservation tillage and soil management in the dryland wheat regions of the Loess Plateau.
Key words:Conservation tillage/
Wheat/
Stubble mulching/
Soil fungi/
Diversity/
High-throughput sequencing

HTML全文


图1不同耕作方式下土壤真菌Venn图(A)和门水平上的组成及相对丰度(B)
Figure1.OTUs Venn (A) and community composition and relative abundance at phylum level (B) of soil fungi under different tillage treatments


下载: 全尺寸图片幻灯片


图2不同耕作方式下属水平上土壤真菌群落组成热图
Figure2.Heat map of soil fungal community composition at genus level under different tillage treatments


下载: 全尺寸图片幻灯片


图3不同耕作方式下土壤样品相似性聚类树
Figure3.Similarity tree of soil fungal community under different tillage treatments


下载: 全尺寸图片幻灯片


图4不同耕作方式下土壤真菌LEfSe分析的柱状图(A)(LDA值> 3.5)和进化分支图(B)
Figure4.Histogram (A) (LDA score > 3.5) and cladogram (B) based on LEfSe analysis of soil fungal community under different tillage treatments


下载: 全尺寸图片幻灯片

表1不同耕作处理方式描述
Table1.Description of different tillage treatments
代号
Code
处理
Treatment
耕作方式
Tillage practices
TT1 传统耕作
Traditional tillage
小麦收获后用铧式犁耕翻(深度约25 cm), 无秸秆覆盖, 播前旋耕(深度约15 cm)整地
After the wheat was harvested, and straws were removed, the soil was ploughed (about 25 cm deep) by using a mold board plow, followed by the application of a rotavator (about 15 cm deep) before sowing.
NTS 免耕覆盖
No-tillage with stubble
全年不耕作, 播种时用免耕播种机一次性完成施肥和播种, 收获后将小区秸秆粉碎全覆盖
No tillage all year round, no-tillage seeder was used to complete fertilization and sowing at one time; after the wheat was harvested, the soil was covered with straws.
SNTS 深松+免耕覆盖
No-tillage with stubble after subsoiling
采用深松机连续深松覆盖4年(深度约40 cm)后, 进行长期免耕覆盖处理
The soil was continuously subsoiled (about 40 cm deep) by using a subsoiler for 4 years, followed by the long-term no-tillage with straws covering.


下载: 导出CSV
表2不同耕作方式下土壤真菌群落的Alpha多样性指数
Table2.Alpha diversity indexes of soil fungal community under different tillage treatments
处理
Treatment
观察到的物种数
Observed_species
Chao1
指数Chao1 index
ACE指数
ACE index
Shannon
指数Shannon index
Simpson
指数Shannon index
系统发育多样性
PD_whole_tree
覆盖率
Good’s-coverage
TT1 708.333±92.921a 1137.056±86.118a 938.434±123.043a 5.520±0.033a 0.937±0.002a 245.058±39.153a 0.996±0.000b
NTS 854.667±135.721a 1350.146±114.958a 1165.563±117.761a 5.801±0.618a 0.946±0.022a 302.877±65.031a 0.995±0.000a
SNTS 827.333±130.328a 1272.362±126.977a 1040.475±170.083a 5.864±0.451a 0.946±0.022a 299.676±57.102a 0.996±0.000b
同列不同小写字母表示P < 5%水平差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences at P < 0.05 level.


下载: 导出CSV

参考文献(39)
[1]蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979-988 doi: 10.3773/j.issn.1005-264x.2010.08.011
JIANG J, SONG M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988 doi: 10.3773/j.issn.1005-264x.2010.08.011
[2]ESSEL E, XIE J H, DENG C C, et al. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation[J]. Soil and Tillage Research, 2019, 194: 104302 doi: 10.1016/j.still.2019.104302
[3]KRAUT-COHEN J, ZOLTI A, SHALTIEL-HARPAZ L, et al. Effects of tillage practices on soil microbiome and agricultural parameters[J]. Science of the Total Environment, 2020, 705: 135791 doi: 10.1016/j.scitotenv.2019.135791
[4]HUNGRIA M, FRANCHINI J C, BRAND?O-JUNIOR O, et al. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems[J]. Applied Soil Ecology, 2009, 42(3): 288-296 doi: 10.1016/j.apsoil.2009.05.005
[5]WANG Z T, CHEN Q, LIU L, et al. Responses of soil fungi to 5-year conservation tillage treatments in the drylands of Northern China[J]. Applied Soil Ecology, 2016, 101: 132-140 doi: 10.1016/j.apsoil.2016.02.002
[6]SCHLATTER D C, SCHILLINGER W F, BARY A I, et al. Biosolids and conservation tillage: Impacts on soil fungal communities in dryland wheat-fallow cropping systems[J]. Soil Biology and Biochemistry, 2017, 115: 556-567 doi: 10.1016/j.soilbio.2017.09.021
[7]PEIGNé J, VIAN J F, PAYET V, et al. Soil fertility after 10 years of conservation tillage in organic farming[J]. Soil and Tillage Research, 2018, 175: 194-204 doi: 10.1016/j.still.2017.09.008
[8]KLIK A, ROSNER J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes[J]. Soil and Tillage Research, 2020, 203: 104669 doi: 10.1016/j.still.2020.104669
[9]COOPER R J, HAMA-AZIZ Z Q, HISCOCK K M, et al. Conservation tillage and soil health: Lessons from a 5-year UK farm trial (2013-2018)[J]. Soil and Tillage Research, 2020, 202: 104648 doi: 10.1016/j.still.2020.104648
[10]GU S Y, WU S, GUAN Y P, et al. Arbuscular mycorrhizal fungal community was affected by tillage practices rather than residue management in black soil of northeast China[J]. Soil and Tillage Research, 2020, 198: 104552 doi: 10.1016/j.still.2019.104552
[11]WANG Z T, LI T, LI Y Z, et al. Relationship between the microbial community and catabolic diversity in response to conservation tillage[J]. Soil and Tillage Research, 2020, 196: 104431 doi: 10.1016/j.still.2019.104431
[12]WILLIAMS A, JORDAN N R, SMITH R G, et al. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability[J]. Scientific Reports, 2018, 8: 8467 doi: 10.1038/s41598-018-26896-2
[13]张贵云, 张丽萍, 魏明峰, 等. 长期保护性耕作对丛枝菌根真菌多样性的影响[J]. 中国生态农业学报, 2018, 26(7): 1048-1055 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201807012.htm
ZHANG G Y, ZHANG L P, WEI M F, et al. Effect of long-term conservation tillage on arbuscular mycorrhizal fungi diversity[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7): 1048-1055 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201807012.htm
[14]马璐璐, 闫翠梅, 冯彩莲, 等. 玉米秸秆还田对假禾谷镰刀菌及小麦茎基腐病化感效应的模拟研究[J]. 河北农业大学学报, 2019, 42(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-CULT201903008.htm
MA L L, YAN C M, FENG C L, et al. Simulation study on allelopathic effects of corn straw returning on Fusarium pseudograminearum and wheat crown rot[J]. Journal of Hebei Agricultural University, 2019, 42(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-CULT201903008.htm
[15]WANG H H, GUO Q C, LI X, et al. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens[J]. Applied Soil Ecology, 2020, 148: 103488 doi: 10.1016/j.apsoil.2019.103488
[16]王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm
WANG X L, MA K, FU Y Z, et al. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm
[17]CHIMSAH F A, CAI L Q, WU J, et al. Outcomes of long-term conservation tillage research in Northern China[J]. Sustainability, 2020, 12(3): 1062 doi: 10.3390/su12031062
[18]LI Y, SONG D P, LIANG S H, et al. Effect of no-tillage on soil bacterial and fungal community diversity: a meta-analysis[J]. Soil and Tillage Research, 2020, 204: 104721 doi: 10.1016/j.still.2020.104721
[19]HYDBOM S, OLSSON P A. Biochemical signatures reveal positive effects of conservation tillage on arbuscular mycorrhizal fungi but not on saprotrophic fungi and bacteria[J]. Applied Soil Ecology, 2021, 157: 103765 doi: 10.1016/j.apsoil.2020.103765
[20]CARNEIRO M A C, DE ASSIS P C R, PAULINO H B, et al. Diversity of arbuscular mycorrhizal fungi and Nematodes in a 14 years no-tillage chronosequence[J]. Rhizosphere, 2019, 10: 100149 doi: 10.1016/j.rhisph.2019.100149
[21]SOUZA R C, CANT?O M E, NOGUEIRA M A, et al. Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach[J]. Brazilian Journal of Microbiology, 2018, 49(4): 723-730 doi: 10.1016/j.bjm.2018.03.001
[22]SOMENAHALLY A, DUPONT J I, BRADY J, et al. Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems[J]. Soil Biology and Biochemistry, 2018, 123: 126-135 doi: 10.1016/j.soilbio.2018.04.025
[23]韩召军. 植物保护学通论[M]. 北京: 高等教育出版社, 2001
Han Z J. General Theory of Plant Protection[M]. Beijing: Higher Education Press, 2001
[24]BLACKWOOD C B, WALDROP M P, ZAK D R, et al. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition[J]. Environmental Microbiology, 2007, 9(5): 1306-1316 doi: 10.1111/j.1462-2920.2007.01250.x
[25]张贵云, 吕贝贝, 张丽萍, 等. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 358-368 doi: 10.13930/j.cnki.cjea.180604
ZHANG G Y, LYU B B, ZHANG L P, et al. Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 358-368 doi: 10.13930/j.cnki.cjea.180604
[26]冯翠娥, 岳思君, 简阿妮, 等. 硒砂瓜连作对土壤真菌群落结构的影响[J]. 中国生态农业学报(中英文), 2019, 27(4): 537-544 doi: 10.13930/j.cnki.cjea.180746
FENG C E, YUE S J, JIAN A, et al. The effect of continuous cropping of selenium melon on soil fungal community structure[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 537-544 doi: 10.13930/j.cnki.cjea.180746
[27]马书芳, 朱德慧, 曹辉辉, 等. 秸秆全量还田对农作物病虫害的影响及防控对策[J]. 中国植保导刊, 2016, 36(7): 75-77 https://www.cnki.com.cn/Article/CJFDTOTAL-ZBJS201607020.htm
MA S F, ZHU D H, CAO H H, et al. Effects and control of total straw returning on crop diseases and pests[J]. China Plant Protection, 2016, 36(7): 75-77 https://www.cnki.com.cn/Article/CJFDTOTAL-ZBJS201607020.htm
[28]HE J, LI H W, WANG Q J, et al. The adoption of conservation tillage in China[J]. Annals of the New York Academy of Sciences, 2010, 1195(Suppl 1): E96-E106 http://www.cabdirect.org/abstracts/20103189634.html
[29]QI Y Z, ZHEN W C, LI H Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS[J]. Journal of Integrative Agriculture, 2015, 14(1): 88-97 doi: 10.1016/S2095-3119(14)60795-4
[30]FLOWER K C, HüBERLI D, COLLINS S J, et al. Progression of plant-parasitic Nematodes and foliar and root diseases under no-tillage with different crop rotations[J]. Soil and Tillage Research, 2019, 191: 18-28 http://www.sciencedirect.com/science/article/pii/S016719871831033X
[31]WANG H H, LI X, LI X, et al. Long-term no-tillage and different residue amounts alter soil microbial community composition and increase the risk of maize root rot in northeast China[J]. Soil and Tillage Research, 2020, 196: 104452
[32]GENG Z Y, ZHU W, SU H, et al. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella Zeae)[J]. Biotechnology Advances, 2014, 32(2): 390-402 http://www.sciencedirect.com/science/article/pii/S0734975013002243
[33]CHEN H H, DAI Z M, VEACH A M, et al. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass[J]. Agriculture, Ecosystems & Environment, 2020, 293: 106841
[34]LI Y, ZHANG Q P, CAI Y J, et al. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage[J]. Science of the Total Environment, 2020, 716: 137164
[35]DEGRUNE F, THEODORAKOPOULOS N, DUFRêNE M, et al. No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium)[J]. Agriculture, Ecosystems & Environment, 2016, 224: 12-21 http://www.sciencedirect.com/science/article/pii/S0167880916301451
[36]曹辉, 李燕歌, 周春然, 等. 炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响[J]. 中国农业科学, 2016, 49(17): 3413-3424 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201617014.htm
CAO H, LI Y G, ZHOU C R, et al. Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil[J]. Scientia Agricultura Sinica, 2016, 49(17): 3413-3424 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201617014.htm
[37]HAO J Q, LIN Y, REN G X, et al. Comprehensive benefit evaluation of conservation tillage based on BP neural network in the Loess Plateau[J]. Soil and Tillage Research, 2021, 205: 104784 http://www.sciencedirect.com/science/article/pii/S0167198720305663
[38]LI M, HE P, GUO X L, et al. Fifteen-year no tillage of a Mollisol with residue retention indirectly affects topsoil bacterial community by altering soil properties[J]. Soil and Tillage Research, 2021, 205: 104804
[39]SUN L, LI J, WANG Q, et al. The effects of eight years of conservation tillage on the soil physicochemical properties and bacterial communities in a rain-fed agroecosystem of the loess plateau, China[J]. Land Degradation & Development, 2020, 31(16): 2475-2489

相关话题/土壤 微生物 图片 植物 农业