删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

提升土壤肥力可实现玉米机械粒收增产减损

本站小编 Free考研考试/2022-01-01

于晓芳,
雷娟玮,
高聚林,,
马达灵,,
王志刚,
胡树平,
孙继颖,
青格尔,
屈佳伟,
王富贵
内蒙古农业大学 呼和浩特 010018
基金项目: 国家重点研发计划课题2017YFD0300804
国家产业技术体系项目CARS-02-63
农业部华北黄土高原地区作物栽培科学观测实验站项目25204120


详细信息
作者简介:于晓芳, 主要研究方向为玉米生理生态。E-mail: yuxiaofang75@163.com
通讯作者:高聚林, 主要研究方向为玉米生理生态, E-mail: nmgaojulin@163.com
马达灵, 主要研究方向为玉米生理生态, E-mail: madaling@sina.com
中图分类号:S344;S513

计量

文章访问数:77
HTML全文浏览量:38
PDF下载量:12
被引次数:0
出版历程

收稿日期:2020-08-24
录用日期:2020-11-12
网络出版日期:2021-06-22
刊出日期:2021-06-01

Soil fertility improvement increases maize yield and reduces loss during mechanized grain harvest

YU Xiaofang,
LEI Juanwei,
GAO Julin,,
MA Daling,,
WANG Zhigang,
HU Shuping,
SUN Jiying,
Qing geer,
QU Jiawei,
WANG Fugui
Inner Mongolia Agricultural University, Hohhot 010018, China
Funds: the National Key Research and Development Program of China2017YFD0300804
China Agriculture Research SystemCARS-02-63
the Project of Scientific Observation and Experimental Station of Crop Cultivation in North China Loess Plateau of Ministry of Agriculture of China25204120


More Information
Corresponding author:GAO Julin, E-mail: nmgaojulin@163.com;MA Daling, E-mail: madaling@sina.com


摘要
HTML全文
(12)(5)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:针对我国玉米生产中机械粒收存在产量损失率、破碎率高的问题,本试验以农户浅旋的土壤肥力为对照,设置深耕、免耕和秸秆原位还田措施等创造的不同土壤肥力水平,以‘先玉696’和‘西蒙6号’为试验材料,在高低两种种植密度下测定玉米机收质量、穗位整齐度、倒伏率、籽粒脱水速率和籽粒含水率,以及产量和产量构成等指标,揭示土壤肥力提升后对玉米机械粒收增产减损的影响机制。研究结果表明:1)提升土壤肥力可降低玉米机械粒收的产量损失率,在高密度下作用更加明显,每提升1个肥力单位,产量损失率下降12.55~15.70个百分点。2)提升土壤肥力可以使穗位整齐度提高5.35~9.69、玉米倒伏率降低5.44~9.75个百分点、籽粒平均脱水速率提高0.048~0.090%·d-1,有效缓解增密带来的负面影响,是产量损失率降低的主要原因。3)提高土壤肥力可明显增加玉米的有效穗数、穗粒数和千粒重,从而使玉米籽粒产量提高1878.5~2544.4 kg·hm-2;增密后高肥力水平土壤具有增产效果。因此,内蒙古地区通过耕作措施与秸秆还田提升土壤肥力可实现玉米机械粒收增产减损。
关键词:玉米/
机械粒收/
土壤肥力/
耕作措施/
秸秆还田/
产量损失
Abstract:The rates of maize grain yield loss, grain crushing, and impurity during mechanized grain harvest in China are high. To reduce grain yield loss, the effects of soil fertility improvement on mechanized grain harvest quality were investigated to provide a theoretical basis for optimizing tillage and straw returning measures. Maize cultivars 'XY696' and 'XM6' were planted at high and low densities under different soil fertilities: low fertility (with tillage and straw returning measures of strip cultivation and no-tillage), medium fertility (with subsoiling and deep tillage), and high fertility (with straw incorporation, subsoiling, and straw incorporation with deep tillage). The farm rotary tillage (with much lower fertility) served as the control treatment. The following mechanized grain harvest quality indicators were measured: ear height uniformity, lodging rate, dehydration rate, and grain moisture content, as well as the yield and yield components. The results showed that soil fertility, maize cultivar, and planting density significantly (P < 0.05) affected the quality indexes of mechanized grain harvest, maize morphology characteristics, grain dehydration, and maize yield. Soil fertility improvement reduced grain yield loss during maize mechanized grain harvest, whereas the grain crushing and impurity rates did not change with soil fertility improvement. Under high planting density, yield loss decreased by 12.55-15.70 percentage for each fertility unit. Yield loss increased with increasing planting density, and the loss rate of 'XY696' was more than that of 'XM6'. Soil fertility improvement led to an increase in ear height uniformity (5.35-9.69), reduced maize lodging (5.44-9.75 percentage), and increased the grain dehydration rate (0.048-0.090%·d-1). Optimization of these indexes may explain the reduction in yield loss at high fertility. Increased planting density reduced ear height uniformity and increased the maize lodging and grain dehydration rates. Soil fertility improvement effectively alleviated the negative impacts of densification. 'XY696' had lower ear height uniformity, higher lodging, and slower dehydration compared to 'XM6', which led to higher grain loss for 'XY696'. Soil fertility improvement increased the ear numbers per unit area, grain numbers per ear, and 1000-grain weight, ultimately increasing yield by 1878.5-2544.4 kg·hm-2 for each fertility unit increase. The increase in maize grain yield was due to a reduction in grain yield loss during mechanized maize grain harvest. The number of ears per unit area increased, whereas the grain number per ear and the 1000-grain weight decreased when the planting density increased. Maize grain yield increased when the planting density increased at high fertility levels. Therefore, soil fertility improvement via tillage and straw returning can increase maize yield and reduce yield loss during mechanized grain harvest in Inner Mongolia. Under high soil fertility, a reasonable planting density increase can improve the yield and harvest quality and decrease the grain moisture content. Reduced mechanized grain loss can be achieved by selecting maize cultivars with high lodging resistance, high ear height uniformity, and a fast dehydration rate.
Key words:Maize/
Mechanized grain harvest/
Soil fertility/
Tillage measures/
Straw returning/
Yield loss

HTML全文


图12018年和2019年各耕作方式下土壤肥力聚类结果
F、SC、NT、SS、DP、SCR、NTR、SSR和DPR分别表示农户浅旋、条深旋、免耕、深松、深翻、推茬清垄条深旋、秸秆覆盖还田免耕播种、深松秸秆混拌还田和深翻秸秆粉碎还田。F, SC, NT, SS, DP, SCR, NTR, SSR, and DPR mean farmer rotary tillage, strip cultivation, no-till, subsoiling, deep tillage, straw incorporation with strip cultivation, straw incorporation with no-tillage, straw incorporation with subsoiling, straw incorporation with deep tillage, respectively.
Figure1.Clustering results of soil fertility under various tillage and straw returning measures in 2018 and 2019


下载: 全尺寸图片幻灯片


图22018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下产量损失率的影响
同一品种同一密度下, 不同小写字母表示不同肥力间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和产量损失率回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and yield loss rate at P < 0.01 level.
Figure2.Effects of soil fertility on maize grain yield loss rates of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图32018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下籽粒破碎率的影响
同一品种同一密度下, 不同小写字母表示不同肥力水平间在 P<0.05 水平差异显著。*表示 P<0.05 水平肥力水平和籽粒破碎率回归公式显 著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. * means significant regression equation between soil fertility and grain damage rate at P<0.05 level.
Figure3.Effects of soil fertility on maize grain damage rates of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图42018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下杂质率的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。*表示P < 0.05水平肥力水平和杂质率回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. * means significant regression equation between soil fertility and impurity rate at P < 0.05 level.
Figure4.Effects of soil fertility on maize impurity rates of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图52018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下穗位高整齐度影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**和*分别表示P < 0.01和P < 0.05水平肥力水平和穗位高整齐度回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. * and ** mean significant regression equations between soil fertility and uniformity of ear height of maize varieties at P < 0.01 and P < 0.05 levels, respectively.
Figure5.Effects of soil fertility on uniformities of ear height of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图62018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下玉米倒伏率的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和玉米倒伏率回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and maize lodging rate at P < 0.01 level.
Figure6.Effects of soil fertility on maize lodging rates of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图72018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下籽粒平均脱水速率的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**和*分别表示P < 0.01和P < 0.05水平肥力水平和脱水速率回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. * and ** mean significant regression equations between soil fertility and grain dehydration rate at P < 0.01 and P < 0.05 levels, respectively.
Figure7.Effects of soil fertility on grain dehydration rates of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图82018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株·hm?2)和低密度(82 500株·hm?2)下收获籽粒含水量影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density.
Figure8.Effects of soil fertility on grain moisture content of maize varieties 'XY696' and 'XM6' at high (112 500株?hm?2) and low (82 500株?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图92018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下产量的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和产量回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and yield at P < 0.01 level.
Figure9.Effects of soil fertility on grain yields per unit area of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图102018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下公顷穗数影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和公顷穗数回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and ear number per hectare at P < 0.01 level.
Figure10.Effects of soil fertility on ear numbers per hectare of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图112018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下单穗粒数的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和单穗粒数回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and kernel numbers per ear at P < 0.01 level.
Figure11.Effects of soil fertility on kernel numbers per ear of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片


图122018年和2019年土壤肥力对玉米品种‘先玉696’(XY696)和‘西蒙6号’(XM6)在高密度(112 500株?hm?2)和低密度(82 500株?hm?2)下千粒重的影响
同一品种同一密度下, 不同字母表示不同肥力水平间在P < 0.05水平差异显著。**表示P < 0.01水平肥力水平和玉米千粒重回归公式显著。Different lowercase letters mean significant differences among different soil fertilities for the same maize variety under the same planting density. ** means significant regression equation between soil fertility and 1000-kernel weight of maize at P < 0.01 level.
Figure12.Effects of soil fertility on 1000-kernel weights of maize varieties 'XY696' and 'XM6' at high (112 500 plants?hm?2) and low (82 500 plants?hm?2) densities in 2018 and 2019


下载: 全尺寸图片幻灯片

表12018年和2019年不同耕作措施和秸秆还田的土壤养分情况
Table1.Soil nutrients contents of different tillage and straw returning measures in 2018 and 2019
指标
Index
年度Year农户浅旋
Farmer rotary tillage (F)
条深旋
Strip cultivation (SC)
深松Subsoiling (SS)深翻Deep tillage (DP)免耕No-till (NT)推茬清垄条
深旋
Straw incorporation with strip cultivation (SCR)
深松秸秆
混拌还田
Straw incorporation with subsoiling (SSR)
深翻秸秆
粉碎还田
Straw incorporation with deep tillage (DPR)
秸秆覆盖
还田免耕播种Straw incorporation with no-tillage (NTR)
碱解氮
Alkali-hydrolysable N (mg?kg–1)
201851.650.953.059.236.250.857.763.148.5
201952.451.651.062.946.565.977.158.267.9
速效磷
Available P
(mg?kg–1)
20182.23.13.44.34.93.43.65.65.1
20192.63.63.02.74.54.03.13.73.3
速效钾
Available K
(mg?kg–1)
201863.171.677.390.061.081.593.395.271.8
201960.673.883.990.269.585.592.7113.777.8
有机质
Organic matter
(g?kg–1)
201819.721.224.423.819.725.625.326.428.9
201915.818.921.825.320.923.325.332.016.5


下载: 导出CSV
表22018年和2019年不同耕作措施和秸秆还田的土壤肥力指数
Table2.Soil fertility indexes of different tillage and straw returning measures in 2018 and 2019
年份
Year
农户浅旋Farmer rotary tillage (F)条深旋Strip cultivation (SC)深松Subsoiling (SS)深翻
Deep tillage (DP)
免耕No-till (NT)推茬清垄条深旋
Straw incorporation with strip cultivation (SCR)
深松秸秆混拌还田
Straw incorporation with subsoiling (SSR)
深翻秸秆粉碎还田
Straw incorporation with deep tillage (DPR)
秸秆覆盖还田
免耕播种
Straw incorporation with no-tillage (NTR)
20180.31850.41930.46630.59140.43510.43680.63920.78340.5730
20190.26730.43640.58230.63870.36250.60060.75460.80830.5650
土壤肥力评价指标分别为土壤容重、紧实度、孔隙度、含水量、氮磷钾、有机质、过氧化氢酶、脲酶、蔗糖酶、细菌、放线菌、真菌和阳离子交换量; 评价方法根据国家耕地质量等级GB/T 33469—2016。The soil fertility indexes were calculated with soil bulk density, compactness, porosity, water content, nitrogen, phosphorus, potassium, organic matter, catalase, urease, sucrase, bacteria, actinomycetes, fungi and cation exchange according to the National Cultivated Land Quality Grade GB/T 33469—2016.


下载: 导出CSV
表32018—2019年不同处理下玉米机械粒收质量和倒伏率的方差分析
Table3.Analysis of variance on maize mechanized grain harvest quality in different tillage and straw returning measures in 2018 and 2019
变异来源
Source of variation
20182019
损失率
Loss
rate
破碎率
Crushing
rate
杂质率Impurity rate倒伏率
Lodging
rate
损失率
Loss rate
破碎率Crushing rate杂质率Impurity rate倒伏率
Lodging
rate
土壤肥力Soil fertility*************
品种Varietyns****nsns****ns
密度Density**************
土壤肥力×品种Soil fertility × varietynsnsnsnsns*nsns
土壤肥力×密度Soil fertility × densityns*ns*ns***
品种×密度Variety × densityns*nsnsnsnsnsns
土壤肥力×品种×密度
Soil fertility × variety × density
nsnsnsnsnnsnsns
*、**分别表示P < 0.05和P < 0.01水平影响显著, ns表示影响不显著。*, ** indicate significant effects at P < 0.05 and P < 0.01 levels, respectively; “ns” indicates no significant effect.


下载: 导出CSV
表42018年和2019年不同处理间玉米收获籽粒含水率的方差分析
Table4.Analysis of variance on maize grain moisture content in harvested between different tillage and straw returning measures in 2018 and 2019
变异来源
Source of variation
籽粒脱水速率
Grain dehydration rate
收获籽粒含水率
Harvested grain moisture content
2018201920182019
土壤肥力Soil fertility********
品种Variety********
密度Density********
土壤肥力×品种Soil fertility × varietynsnsnsns
土壤肥力×密度Soil fertility × densitynsnsns**
品种×密度Variety × density****ns
土壤肥力×品种×密度Soil fertility × variety × densitynsnsnsns
*、**分别表示P < 0.05和P < 0.01水平影响显著, ns表示影响不显著。*, ** indicate significant effects at P < 0.05 and P < 0.01 levels, respectively; “ns” indicates no significant effect.


下载: 导出CSV
表52018年和2019年不同处理间玉米籽粒产量及其构成的方差分析
Table5.Analysis of variance on maize grain yield and yield components between different tillage and straw returning measures in 2018 and 2019
变异来源
Source of variation
产量
Yield
穗数
Ear number
穗粒数
Kernel number per ear
千粒重
1000-kernel weight
20182019201820192018201920182019
土壤肥力Soil fertility*************
品种Variety**************
密度Density***************
土壤肥力×品种Soil fertility × varietynsnsnsnsnsnsnsns
土壤肥力×密度Soil fertility × densitynsnsnsnsnsnsnsns
品种×密度Variety × densitynsnsnsns**ns*ns
土壤肥力×品种×密度Soil fertility × variety × densitynsnsnsnsnsnsnsns
*、**分别表示 P<0.05 和 P<0.01 水平差异显著, ns 表示差异不显著。*, ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect.


下载: 导出CSV

参考文献(39)
[1]柴宗文, 王克如, 郭银巧, 等. 玉米机械粒收质量现状及其与含水率的关系[J]. 中国农业科学, 2017, 50(11): 2036-2043 doi: 10.3864/j.issn.0578-1752.2017.11.009
CHAI Z W, WANG K R, GUO Y Q, et al. Current status of maize mechanical grain harvesting and its relationship with grain moisture content[J]. Scientia Agricultura Sinica, 2017, 50(11): 2036-2043 doi: 10.3864/j.issn.0578-1752.2017.11.009
[2]李少昆, 王克如, 高聚林, 等. 内蒙古玉米机械粒收质量及其影响因素研究[J]. 玉米科学, 2018, 26(4): 68-73 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804012.htm
LI S K, WANG K R, GAO J L, et al. Study on maize mechanical grain harvest in Inner Mongolia, China[J]. Journal of Maize Sciences, 2018, 26(4): 68-73 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804012.htm
[3]李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向[J]. 石河子大学学报: 自然科学版, 2017, 35(3): 265-272 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201703001.htm
LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology[J]. Journal of Shihezi University: Natural Science, 2017, 35(3): 265-272 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201703001.htm
[4]顾顺芳. 保护性土壤耕作制度对土壤肥力及夏玉米产量的影响[D]. 郑州: 河南科技大学, 2012
GU S F. Effects of conservation soil tillage systems on soil fertility and grain yield of summer maize[D]. Zhengzhou: Henan University of Science and Technology, 2012
[5]杨德光, 吴玥, 宋秀丽, 等. 轮作对土壤肥力及玉米生长发育的影响[J]. 玉米科学, 2019, 27(4): 127-133 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201904020.htm
YANG D G, WU Y, SONG X L, et al. Effects of crop rotation on soil fertility and growth and development of maize[J]. Journal of Maize Sciences, 2019, 27(4): 127-133 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201904020.htm
[6]马慧娟. 秸秆还田不同年限对土壤生化性状及玉米生长发育的影响研究[D]. 长春: 吉林大学, 2016
MA H J. Effects of straw application with different years on soil biochemical properties and the development of maize[D]. Changchun: Jilin University, 2016
[7]YANG L, CUI T, QU Z, et al. Development and application of mechanized maize harvesters[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 15-28
[8]MU P L. Research on high net and low loss cleaning screen of corn grain harvester[J]. Changchun: Jilin University, 2020
[9]曹亚娟, 沙莎, 何闻静, 等. 玉米籽粒机收影响因素及其栽培调控研究进展[J]. 中国农学通报, 2020, 36(1): 19-23 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202001004.htm
CAO Y J, SHA S, HE W J, et al. Influence factors of machine harvest maize grains and the cultivation regulation: Research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 19-23 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202001004.htm
[10]VYN T J, MOES J. Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions[J]. Agronomy Journal, 1988, 80(6): 915-920 doi: 10.2134/agronj1988.00021962008000060015x
[11]BAUER P J, CARTER P R. Effect of seeding date, plant density, moisture availability, and soil nitrogen fertility on maize kernel breakage susceptibility[J]. Crop Science, 1986, 26(6): 1220-1226 doi: 10.2135/cropsci1986.0011183X002600060030x
[12]陈得义, 景希强, 王孝杰, 等. 耐密宜机收玉米品种选育探讨[J]. 作物杂志, 2014, (2): 13-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201402005.htm
CHEN D Y, JING X Q, WANG X J, et al. Discussion on the breeding for mechanical harvesting and density tolerant maize hybrids[J]. Crops, 2014, (2): 13-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201402005.htm
[13]张向前, 王瑞, 张瑞霞, 等. 内蒙古适宜籽粒机械化收获春玉米品种筛选[J]. 北方农业学报, 2018, 46(1): 25-29 doi: 10.3969/j.issn.2096-1197.2018.01.06
ZHANG X Q, WANG R, ZHANG R X, et al. Screening varieties suitable for mechanical harvesting of spring maize kernel in Inner Mongolia[J]. Journal of Northern Agriculture, 2018, 46(1): 25-29 doi: 10.3969/j.issn.2096-1197.2018.01.06
[14]DUTTA P K. Effects of grain moisture, drying methods, and variety on breakage susceptibility of shelled corn as measured by the Wisconsin Breakage Tester[D]. Ames: Iowa State University, 1986
[15]王克如, 李少昆. 玉米机械粒收破碎率研究进展[J]. 中国农业科学, 2017, 50(11): 2018-2026 doi: 10.3864/j.issn.0578-1752.2017.11.007
WANG K R, LI S K. Progresses in research on grain broken rate by mechanical grain harvesting[J]. Scientia Agricultura Sinica, 2017, 50(11): 2018-2026 doi: 10.3864/j.issn.0578-1752.2017.11.007
[16]张万旭, 王克如, 谢瑞芝, 等. 玉米机械收获子粒破碎率与含水率关系的品种间差异[J]. 玉米科学, 2018, 26(4): 74-78 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804013.htm
ZHANG W X, WANG K R, XIE R Z, et al. Relationship between maize grain broken rate and moisture content as well as the differences among cultivars[J]. Journal of Maize Sciences, 2018, 26(4): 74-78 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804013.htm
[17]王浥州, 张万旭, 王克如, 等. 新疆玉米机械收获籽粒含水率与相关性状的关系[J]. 西北农业学报, 2019, 28(9): 1419-1427 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201909006.htm
WANG Y Z, ZHANG W X, WANG K R, et al. Relationship between grain moisture content and characters relevant to maize mechanical harvesting in Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(9): 1419-1427 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201909006.htm
[18]张凤启, 王邑双, 丁勇, 等. 玉米籽粒脱水速率研究进展[J]. 农学学报, 2018, 8(11): 4-8 doi: 10.11923/j.issn.2095-4050.cjas17090005
ZHANG F Q, WANG Y S, DING Y, et al. Corn kernel dehydration rate: Research progress[J]. Journal of Agriculture, 2018, 8(11): 4-8 doi: 10.11923/j.issn.2095-4050.cjas17090005
[19]刘显君, 王振华, 王霞, 等. 玉米籽粒生理成熟后自然脱水速率QTL的初步定位[J]. 作物学报, 2010, 36(1): 47-52 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201001008.htm
LIU X J, WANG Z H, WANG X, et al. Primary mapping of QTL for dehydration rate of maize kernel after physiological maturing[J]. Acta Agronomica Sinica, 2010, 36(1): 47-52 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201001008.htm
[20]李少昆, 谢瑞芝, 王克如, 等. 专题导读: 加强籽粒脱水与植株倒伏特性研究、推动玉米机械粒收技术应用[J]. 作物学报, 2018, 44(12): 1743-1746 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812002.htm
LI S K, XIE R Z, WANG K R, et al. Editorial: Strengthening the research of grain dehydration and lodging characteristics to promote the application of maize mechanical grain harvest technology[J]. Acta Agronomica Sinica, 2018, 44(12): 1743-1746 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812002.htm
[21]薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响[J]. 作物学报, 2018, 44(12): 1774-1781 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812006.htm
XUE J, LI L L, XIE R Z, et al. Effect of lodging on maize grain losing and harvest efficiency in mechanical grain harvest[J]. Acta Agronomica Sinica, 2018, 44(12): 1774-1781 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812006.htm
[22]薛军, 董朋飞, 胡树平, 等. 玉米倒伏对机械粒收损失的影响及倒伏减损收获技术[J]. 玉米科学, 2020, 28(6): 116-120
XUE J, DONG P F, HU S P, et al. Effect of lodging on maize grain loss and loss reduction technology in mechanical grain harvest[J]. Journal of Maize Sciences, 2020, 28(6): 116-120
[23]张峰. 不同秸秆还田方式对玉米生长发育及耕层土壤性质的影响[D]. 哈尔滨: 东北农业大学, 2019
ZHANG F. Effects of methods of different straw returning on growth and development of maize and soil properties of tillage layer[D]. Harbin: Northeast Agricultural University, 2019
[24]田文博. 不同秸秆还田方式对玉米生长发育及产量的影响[D]. 长春: 吉林农业大学, 2019
TIAN W B. Effects of different patterns of straw returning on growth and yield of maize[D]. Changchun: Jilin Agricultural University, 2019
[25]张文可. 秸秆还田模式对土壤理化性质及玉米生长发育的影响[D]. 沈阳: 沈阳农业大学, 2018
ZHANG W K. Effects of straw incorporation modes on soil physicochemical properties and growth of maize[D]. Shenyang: Shenyang Agricultural University, 2018
[26]ZHANG P, CHEN X L, WEI T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160: 65-72 doi: 10.1016/j.still.2016.02.006
[27]展文洁, 刘剑钊, 梁尧, 等. 不同耕作方式对玉米根系特性及养分吸收转运的影响[J]. 植物营养与肥料学报, 2020, 26(5): 817-825 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202005003.htm
ZHAN W J, LIU J Z, LIANG Y, et al. Effect of soil tillage modes on root morphology and nutrient uptake and translocation of maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 817-825 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202005003.htm
[28]姜英, 王峥宇, 廉宏利, 等. 耕作和秸秆还田方式对东北春玉米吐丝期根系特征及产量的影响[J]. 中国农业科学, 2020, 53(15): 3071-3082 doi: 10.3864/j.issn.0578-1752.2020.15.008
JIANG Y, WANG Z Y, LIAN H L, et al. Effects of tillage and straw incorporation method on root trait at silking stage and grain yield of spring maize in Northeast[J]. Scientia Agricultura Sinica, 2020, 53(15): 3071-3082 doi: 10.3864/j.issn.0578-1752.2020.15.008
[29]张博文. 深松对黑土区土壤特性及细菌群落结构影响[D]. 呼和浩特: 内蒙古农业大学, 2018
ZHANG B W. Effects of subsoiling on soil properties and bacterial community structure in black soil region[D]. Hohhot: Inner Mongolia Agricultural University, 2018
[30]包额尔敦嘎, 王春雷, 高丽辉, 等. 浅析北方深松和不同种植密度对玉米产量性状的综合影响[J]. 农业科技通讯, 2016, (1): 142-145 doi: 10.3969/j.issn.1000-6400.2016.01.046
Baoeerdunga, WANG C L, GAO L H, et al. A brief analysis on the comprehensive influence of northern subsoiling and different planting density on maize yield characters[J]. Bulletin of Agricultural Science and Technology, 2016, (1): 142-145 doi: 10.3969/j.issn.1000-6400.2016.01.046
[31]卫勇强, 雷晓兵, 梁晓伟, 等. 不同夏玉米品种籽粒自然脱水速率的研究[J]. 江苏农业科学, 2011, 39(6): 167-168 doi: 10.3969/j.issn.1002-1302.2011.06.063
WEI Y Q, LEI X B, LIANG X W, et al. Study on kernel naturally dry-down rate of different summer maize hybrids varieties[J]. Jiangsu Agricultural Sciences, 2011, 39(6): 167-168 doi: 10.3969/j.issn.1002-1302.2011.06.063
[32]MA D L, XIE R Z, LIU X, et al. Lodging-related stalk characteristics of maize varieties in China since the 1950s[J]. Crop Science, 2014, 54(6): 2805-2814 doi: 10.2135/cropsci2014.04.0301
[33]徐明岗, 卢昌艾, 张文菊, 等. 我国耕地质量状况与提升对策[J]. 中国农业资源与区划, 2016, 37(7): 8-14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201607003.htm
XU M G, LU C A, ZHANG W J, et al. Situation of the quality of arable land in China and improvement strategy[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7): 8-14 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201607003.htm
[34]丛萍, 李玉义, 王婧, 等. 秸秆一次性深埋还田量对亚表层土壤肥力质量的影响[J]. 植物营养与肥料学报, 2020, 26(1): 74-85 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001008.htm
CONG P, LI Y Y, WANG J, et al. Effect of one-off bury of different amounts of straws at 40 cm deep on subsoil fertility[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 74-85 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001008.htm
[35]梁尧, 蔡红光, 闫孝贡, 等. 玉米秸秆不同还田方式对黑土肥力特征的影响[J]. 玉米科学, 2016, 24(6): 107-113 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201606018.htm
LIANG Y, CAI H G, YAN X G, et al. Effect of different maize straw-returning modes on the fertility of black soil[J]. Journal of Maize Sciences, 2016, 24(6): 107-113 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201606018.htm
[36]PEIGNé J, VIAN J F, PAYET V, et al. Soil fertility after 10 years of conservation tillage in organic farming[J]. Soil and Tillage Research, 2018, 175: 194-204 doi: 10.1016/j.still.2017.09.008
[37]BüCHI L, WENDLING M, AMOSSé C, et al. Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland[J]. Soil and Tillage Research, 2017, 174: 120-129 doi: 10.1016/j.still.2017.07.002
[38]柳枫贺, 王克如, 李健, 等. 影响玉米机械收粒质量因素的分析[J]. 作物杂志, 2013, (4): 116-119 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201304028.htm
LIU F H, WANG K R, LI J, et al. Factors affecting corn mechanically harvesting grain quality[J]. Crops, 2013, (4): 116-119 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201304028.htm
[39]孔凡磊, 赵波, 詹小旭, 等. 四川省夏玉米机械粒收适宜品种筛选与影响因素分析[J]. 中国生态农业学报, 2020, 28(6): 835-842 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0606&flag=1
KONG F L, ZHAO B, ZHAN X X, et al. Variety screening of mechanical grain harvest and analysis of influencing factors of summer maize in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 835-842 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0606&flag=1

相关话题/土壤 机械 图片 质量 科学