删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

管理措施及土壤因子对5种农田生境地表蜘蛛群落多样性的影响

本站小编 Free考研考试/2022-01-01

龙武赐1,,
李天依1,
黎淳1,
谢冰一1,
任少鹏2,
金树权2,
宇振荣3,
刘云慧3, 4,
段美春1, 4,,
1.西南大学农学与生物科技学院 重庆 400715
2.宁波市农业科学研究院 宁波 315040
3.中国农业大学资源与环境学院 北京 100193
4.北京市生物多样性与有机农业重点实验室 北京 100193
基金项目: 国家自然科学基金项目41901218
国家重点研发计划项目2018YFC0507203
中央高校基本科研业务费专项资金项目SWU119074

详细信息
作者简介:龙武赐, 主要研究方向为农业生态经济效益评价。E-mail: 1411667566@qq.com
通讯作者:段美春, 主要研究方向为农业景观与生物多样性保护。E-mail: duanmc@swu.edu.cn
中图分类号:S154.5;F323

计量

文章访问数:568
HTML全文浏览量:16
PDF下载量:463
被引次数:0
出版历程

收稿日期:2020-11-20
录用日期:2021-01-22
刊出日期:2021-03-01

Effects of management measures and soil factors on the diversity of ground spider communities in five agricultural habitat types

LONG Wuci1,,
LI Tianyi1,
LI Chun1,
XIE Bingyi1,
REN Shaopeng2,
JIN Shuquan2,
YU Zhenrong3,
LIU Yunhui3, 4,
DUAN Meichun1, 4,,
1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
2. Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
4. Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
Funds: the National Natural Science Foundation of China41901218
the National Key Research and Development Project of China2018YFC0507203
the Fundamental Research Funds for the Central Universities of ChinaSWU119074

More Information
Corresponding author:DUAN Meichun, E-mail: duanmc@swu.edu.cn


摘要
HTML全文
(3)(2)
参考文献(43)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:以往的研究表明有机管理有利于生物多样性保护,但在不同农业生境类型中是否都存在这个结论呢?基于此问题,本研究在一个多生境的有机管理农场与一个相邻的多生境常规集约化管理农区,采用陷阱法进行蜘蛛取样,对比有机和常规管理措施下大棚菜地、果园、稻田田埂、露天田块及农田边界等5种生境类型的农田蜘蛛多样性的差异,并分析土壤因子对蜘蛛多样性的影响。研究发现:1)有机管理与常规管理的蜘蛛物种数没有显著差异,但有机管理的果园中蜘蛛个体数比常规管理的果园中多139%,且差异显著。同一管理措施下,仅常规管理农田区的农田边界蜘蛛个体数和物种数分别显著高于其他生境均值104%和59%。2)有机管理农场比常规管理农田的蜘蛛物种组成差异略大,且在有机管理下不同生境间的蜘蛛群落组成差异更明显。3)土壤因子中有机质、全氮、全磷含量等对蜘蛛群落结构有显著影响,但对蜘蛛个体数和物种数没有显著影响,仅土壤Cu含量和蜘蛛个体数呈显著负相关。在本研究中虽然有机管理和土壤因子对蜘蛛多样性有一定影响,但不同生境间管理强度、植被结构等差异对蜘蛛多样性的影响更大。因此,发展多种农业生境类型的有机农业可提升物种β多样性。同时,在常规集约化管理农区,保留农田边界等半自然生境、适当减少化肥和农药等投入、降低农田内部的管理强度、防止土壤重金属污染等措施均有助于保护蜘蛛多样性。
关键词:有机管理/
土地利用类型/
农业生境/
蜘蛛多样性
Abstract:Empirical studies have demonstrated the positive effects of organic management on farmland biodiversity, but the consistency of this effect between different agricultural habitat types has not been explored. Therefore, a comparison study was conducted between two adjacent farmlands, both with multiple habitats but subjected to contrasting management measures (organic vs. conventional). We sampled spiders using pitfall traps and examined differences in their diversity across organically and conventionally managed farmlands for five different habitat types (vegetable greenhouses, orchards, open-air fields, field margins, and paddy ridges). We also examined how the soil factors affect spider diversity. No significant differences were detected in species richness between the organically and conventionally managed farmlands, but spider abundance in the organically managed orchards was 139% higher than in the conventionally managed orchards. Within the same management system, spider abundance and species richness in the field margins of conventionally managed agricultural areas were 104% and 59% higher than in other habitats, respectively. The difference in spider community composition in organically managed farmland was slightly larger than in conventionally managed farmlands. Meanwhile, the difference in spider community composition between different habitat types was greater in organically managed farmlands than in conventionally managed farmlands. The organic matter content, total nitrogen, and total phosphorus in the soil significantly affected the spider community structure, but these factors did not correlate with spider abundance or species richness. There was a significant negative correlation between total copper (Cu) and spider abundance. This study showed that the spider community is affected by many factors. The management intensity of different habitat types and the vegetation structure were more important than management practices and soil factors. Thus, it is important to create different agricultural habitats and develop organic management techniques to sustain beta-diversity at the landscape scale. Maintaining semi-natural habitats (such as field margins with rich vegetation), reducing agrochemical inputs and disturbances on farmlands, and preventing soil heavy metal pollution may help sustain spider diversity in conventionally managed farmlands.
Key words:Organic management/
Land use types/
Agricultural habitat/
Spider diversity

HTML全文


图1有机管理和常规管理下不同生境类型的蜘蛛个体数(A)和物种数(B)
ALL: 总体(综合5种生境); DC: 大棚蔬菜; GY: 果园; LC: 露天田块; NB: 农田边界; SD: 水稻田埂。不同小写字母表示同一生境下有机管理和常规管理间差异显著(P < 0.05), 不同大写字母表示同一管理措施下不同生境间差异显著(P < 0.05)。ALL: integration of five types of habitats; DC: vegetable greenhouse; GY: orchard; LC: open-air field; NB: field margin; SD: paddy ridge. Different lowercase letters mean significant differences between organic and conventional management practices in the same habitat type (P < 0.05). Different capital letters mean significant differences among different habitat types under the same management practice (P < 0.05).
Figure1.Individuals number (A) and species richness (B) of spiders in different habitats of farmlands under organic and conventional management practices


下载: 全尺寸图片幻灯片


图2有机管理和常规管理农田不同生境类型蜘蛛群落非度量多维度分析(NMDS)(stress=0.16)
第1个字母为C代表常规管理, O代表有机管理; DC为大棚蔬菜; GY为果园; LC为露天田块; NB为农田边界; SD为水稻田埂。The first letter of code represents management practice, C is conventional farming, and O is organic farming. DC is vegetable greenhouse; GY is orchard; LC is open-air field; NB is field margin; SD is paddy ridge.
Figure2.Non-metric multidimensional scaling (NMDS) of spider community in different habitats of farmland under organic and conventional management practices (stress=0.16)


下载: 全尺寸图片幻灯片


图3土壤Cu含量与蜘蛛个体数相关性分析
Figure3.Correlation between soil copper content and spider individuals number


下载: 全尺寸图片幻灯片

表1有机农场和常规农田的蜘蛛群落组成
Table1.Composition of spider community in farmlands under organic and conventional management practices
科Family 物种Species 有机农场
Organic farming
常规农田
Conventional farming
跳蛛科Salticidae 乔氏蚁蛛Myrmarachne formicaria (De Geer, 1778) 1 1
华南菱头蛛Bianor angulosus (Karsch, 1879) 4 1
白斑猎蛛Evarcha albaria (L. Koch, 1878) 14 2
狐拟伊蛛Orienticius vulpes Prószyński, 2016 1 1
裂菱头蛛Bianor balius Thorell, 1890 1 0
菱头蛛属Bianor hotingchlehi. Sp.1 0 2
跳蛛科Sp.1 1 0
跳蛛科Sp.2 0 1
指状哈沙蛛Hasarius dactyloides (Xie, Peng & Kim, 1993) 2 3
球蛛科Theridiidae 球蛛Sp. 1 1 0
日斯坦蛛Stemmops nipponicus (Yaginuma, 1969) 1 0
八斑鞘腹蛛Coleosoma octomaculatum (B?senberg & Strand, 1906) 0 1
皿蛛科Linyphiidae 隆背微蛛Erigone prominens B?senberg & Strand, 1906 87 45
皿蛛科Sp. 1 9 2
皿蛛科Sp. 2 24 4
皿蛛科Sp. 3 1 0
皿蛛科Sp. 4 2 0
食虫沟瘤蛛Ummeliata insecticeps (B?senberg & Strand, 1906) 24 9
塔克额角蛛Gnathonarium taczanowskii (O. P.-Cambridge, 1873) 0 1
狼蛛科Lycosidae 沟渠豹蛛Pardosa laura Karsch, 1879 583 340
己熊蛛Arctosa serrulata (Mao & Song, 1985) 1 2
类奇异獾蛛Trochosa ruricoloides Schenkel, 1963 63 63
类水小狼蛛Piratula piratoides (B?senberg & Strand, 1906) 143 260
忠娲蛛Wadicosa fidelis (O. P.-Cambridge, 1872) 248 87
拟环纹豹蛛Pardosa pseudoannulata (B?senberg & Strand, 1906) 205 120
拟水狼蛛Pirata subpiraticus (B?senberg & Strand, 1906) 3 11
浙江豹蛛Pardosa tschekiangiensis Schenkel, 1963 63 61
前凹小水狼蛛中华亚种Piratula procurva (B?senberg & Strand, 1906) 1 0
细毛小水狼蛛Piratula tenuisetacea (Chai, 1987) 3 11
蟹蛛科Thomisidae 赫氏花蟹蛛Xysticus hedini Schenkel, 1936 5 1
花蟹蛛Sp. 1 1 1
三突伊氏蛛Ebrechtella tricuspidata (Fabricius, 1775) 3 0
平腹蛛Gnaphosidae 近狂蛛属Sp. 1 1 0
平腹蛛属Sp. 1 2 0
白岳粗狂蛛Trachyzelotes baiyuensis Xu, 1991 0 2
赵氏平腹蛛Gnaphosa zhaoi Ovtsharenko, Platnick & Song, 1992 1 0
管巢蛛Clubionidae 十字盾球蛛Orthobula crucifera B?senberg & Strand., 1906 1 0
褶管巢蛛Clubiona corrugata B?senberg & Strand, 1906 5 1
园蛛科Araneidae 四点高亮腹蛛Hypsosinga pygmaea (Sundevall, 1831) 2 0
栉足蛛科Ctenidae 田野阿纳蛛Anahita fauna Karsch, 1879 0 1
栅蛛科Hahniidae 浙江栅蛛Hahnia zhejiangensis Song & Zheng, 1982 3 2
刺足蛛Phrurolithus 中华刺足蛛Phrurolithus sinicus Zhu & Mei, 1982 95 25
盗蛛科Pisauridae 赤条狡蛛Dolomedes saganus B?senberg & Strand, 1906 2 0
类球蛛科Nesticidae 底栖小类球蛛Nesticella mogera (Yaginuma, 1972) 20 6
猫蛛科Oxyopidae 类斜纹猫蛛Oxyopes sertatoides Xie & Kim, 1996 1 0
卵形蛛科Oonopidae 卵形蛛Sp. 1 0 1
隐石蛛Titanoecidae 白斑隐蛛Nurscia albofasciata (Strand, 1907) 1 0
合计Total 1629 1068


下载: 导出CSV
表2土壤因子与蜘蛛群落组成NMDS轴得分的相关性分析
Table2.Correlation analysis of soil factors and scores of NMDS axle based on spiders' community composition data
轴1
Coordinate 1
轴2
Coordinate 2
有机质
Organic matter
全氮
Total nitrogen
全磷
Total phosphorus
碱解氮
Available nitrogen
有机质Organic matter -0.496** -0.190
全氮Total nitrogen -0.498** -0.212 0.999**
全磷Total phosphorus -0.406* -0.122 0.464** 0.462*
碱解氮Available nitrogen -0.497** -0.207 1.000** 1.000** 0.463**
Pb -0.468** 0.014 0.462* 0.459* 0.409* 0.460*
*和**分别表示P < 0.05和P < 0.01水平显著相关。* and ** indicate significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(43)
[1]LI L, HU R C, HUANG J K, et al. A farmland biodiversity strategy is needed for China[J]. Nature Ecology & Evolution, 2020, 4(6): 772-774 http://www.nature.com/articles/s41559-020-1161-2
[2]吴文良, 乔玉辉. 中国有机农业发展与展望[J]. 农学学报, 2018, 8(1): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ201801033.htm
WU W L, QIAO Y H. Status and development perspectives of organic agriculture in China[J]. Journal of Agriculture, 2018, 8(1): 201-204 https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ201801033.htm
[3]REGANOLD J P, WACHTER J M. Organic agriculture in the twenty-first century[J]. Nature Plants, 2016, 2(2): 15221 doi: 10.1038/nplants.2015.221
[4]张鑫. 农田景观格局对地表步甲和蜘蛛多样性影响研究[D]. 北京: 中国农业大学, 2017: 1-5
ZHANG X. The effects of agriculture landscape pattern on the diversity of ground carabid and spider[D]. Beijing: China Agricultural University, 2017: 1-5
[5]BECKMANN M, GERSTNER K, AKIN-FAJIYE M, et al. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis[J]. Global Change Biology, 2019, 25(6): 1941-1956 doi: 10.1111/gcb.14606
[6]KLEIJN D, KOHLER F, BáLDI A, et al. On the relationship between farmland biodiversity and land-use intensity in Europe[J]. Proceedings: Biological Sciences, 2009, 276(1658): 903-909 http://www.ncbi.nlm.nih.gov/pubmed/19019785
[7]陈怀锅. 有机栽培对稻田动物多样性及生态环境的作用和影响[D]. 南京: 南京师范大学, 2012: 34-41
CHEN H G. Effects of organic cultivation on animal diversity and ecological environment in paddy field[D]. Nanjing: Nanjing Normal University, 2012: 34-41
[8]甄华杨, 乔玉辉, 王茂华, 等. 我国有机产业发展概况及效益分析[J]. 农产品质量与安全, 2017, (4): 44-48
ZHEN H Y, QIAO Y H, WANG M H, et al. General situation and benefit analysis of organic industry development in China[J]. Quality and Safety of Agro-Products, 2017, (4): 44-48
[9]SEUFERT V, RAMANKUTTY N, FOLEY J A. Comparing the yields of organic and conventional agriculture[J]. Nature, 2012, 485(7397): 229-232 doi: 10.1038/nature11069
[10]TUCK S L, WINQVIST C, MOTA F, et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis[J]. Journal of Applied Ecology, 2014, 51(3): 746-755 doi: 10.1111/1365-2664.12219
[11]RADER R, BIRKHOFER K, SCHMUCKI R, et al. Organic farming and heterogeneous landscapes positively affect different measures of plant diversity[J]. Journal of Applied Ecology, 2014, 51(6): 1544-1553 doi: 10.1111/1365-2664.12344
[12]BENGTSSON J, AHNSTR?M J, WEIBULL A C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis[J]. Journal of Applied Ecology, 2005, 42(2): 261-269 doi: 10.1111/j.1365-2664.2005.01005.x
[13]SHENNAN C, KRUPNIK T J, BAIRD G, et al. Organic and conventional agriculture: A useful framing?[J]. Annual Review of Environment and Resources, 2017, 42: 317-346 doi: 10.1146/annurev-environ-110615-085750
[14]TSCHARNTKE T, KLEIN A M, KRUESS A, et al. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management[J]. Ecology Letters, 2005, 8(8): 857-874 doi: 10.1111/j.1461-0248.2005.00782.x
[15]李正跃, 阿尔蒂尔瑞M A, 朱有勇. 生物多样性与害虫综合治理[M]. 北京: 科学出版社, 2009: 91-97
LI Z Y, ALTIERI M A, ZHU Y Y. Biodiversity and Integrated Pest Management[M]. Beijing: Science Press, 2009: 91-97
[16]刘彦波. 我国农田蜘蛛利用研究进展[J]. 科技传播, 2010, (7): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-KJCB201007024.htm
LIU Y B. Research progress in the utilization of farmland spiders in China[J]. Public Communication of Science & Technology, 2010, (7): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-KJCB201007024.htm
[17]姚波. 我国农田蜘蛛的保护利用研究进展[J]. 农业与技术, 2016, 36(2): 96
YAO B. Research progress on protection and utilization of spider in farmland in China[J]. Agriculture & Technology, 2016, 36(2): 96
[18]王洪全. 我国农田蜘蛛利用研究进展[J]. 动物学杂志, 1989, (5): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-BIRD198905019.htm
WANG H Q. Research progress on spider utilization in China[J]. Chinese Journal of Zoology, 1989, (5): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-BIRD198905019.htm
[19]FREIBERG J A, DE SALES DAMBROS C, RODRIGUES E N L, et al. Increased grazing intensity in pastures reduces the abundance and richness of ground spiders in an integrated crop-livestock system[J]. Agronomy for Sustainable Development, 2020, 40(1): 951-962 doi: 10.1007/s13593-019-0604-0
[20]邓玲玲, 许木启, 戴家银, 等. 农药对农田蜘蛛生态效应的研究进展[J]. 应用与环境生物学报, 2005, 11(4): 509-513 doi: 10.3321/j.issn:1006-687X.2005.04.029
DENG L L, XU M Q, DAI J Y, et al. Research progress on ecological effects of insecticides on spiders in croplands[J]. Chinese Journal of Applied & Environmental Biology, 2005, 11(4): 509-513 doi: 10.3321/j.issn:1006-687X.2005.04.029
[21]DUAN M C, HU W H, LIU Y H, et al. The influence of landscape alterations on changes in ground beetle (Carabidae) and spider (Araneae) functional groups between 1995 and 2013 in an urban fringe of China[J]. Science of the Total Environment, 2019, 689: 516-525 doi: 10.1016/j.scitotenv.2019.06.198
[22]DUAN M C, LIU Y H, LI X, et al. Effect of present and past landscape structures on the species richness and composition of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) in a dynamic landscape[J]. Landscape and Urban Planning, 2019, 192: 103649 doi: 10.1016/j.landurbplan.2019.103649
[23]BELL J R, WHEATER C P, CULLEN W R. The implications of grassland and heathland management for the conservation of spider communities: A review[J]. Journal of Zoology, 2001, 255(3): 377-387 doi: 10.1017/S0952836901001479
[24]刘向东, 张孝羲, 郭慧芳, 等. 稻田蜘蛛群落对稻飞虱的控制功能作用研究[J]. 生态学报, 2001, 21(1): 100-105 doi: 10.3321/j.issn:1000-0933.2001.01.016
LIU X D, ZHANG X X, GUO H F, et al. Control function of spider community to planthopper in the rice field[J]. Acta Ecologica Sinica, 2001, 21(1): 100-105 doi: 10.3321/j.issn:1000-0933.2001.01.016
[25]王洪全, 颜亨梅, 杨海明. 中国稻田蜘蛛生态与利用研究[J]. 中国农业科学, 1996, 29(5): 68-75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK605.009.htm
WANG H Q, YAN H M, YANG H M. Studies on the ecology of spiders in paddy fields and utilization of spiders for biological control in China[J]. Scientia Agricultura Sinica, 1996, 29(5): 68-75 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK605.009.htm
[26]BATáRY P, SUTCLIFFE L, DORMANN C F, et al. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields[J]. PLoS One, 2013, 8(1): e54818 doi: 10.1371/journal.pone.0054818
[27]HE X Q, QIAO Y H, SIGSGAARD L, et al. The spider diversity and plant hopper control potential in the long-term organic paddy fields in sub-tropical area, China[J]. Agriculture, Ecosystems & Environment, 2020, 295: 106921 http://www.sciencedirect.com/science/article/pii/S0167880920301067
[28]李依林, 陶万强, 张志勇, 等. 有机化梨园不同栽培措施节肢动物多样性比较[J]. 果树学报, 2008, 25(4): 611-614
LI L Y, TAO W Q, ZHANG Z Y, et al. Diversity of arthropod in different managed areas in organic pear orchard[J]. Journal of Fruit Science, 2008, 25(4): 611-614
[29]FULLER R J, NORTON L R, FEBER R E, et al. Benefits of organic farming to biodiversity vary among taxa[J]. Biology Letters, 2005, 1(4): 431-434 doi: 10.1098/rsbl.2005.0357
[30]BENTRUP G. Conservation Buffers—Design Guidelines for Buffers, Corridors, and Greenways[R]. Asheville: U.S. Department of Agriculture, 2008: 93-109
[31]SEUFERT V, RAMANKUTTY N. Many shades of gray—the context-dependent performance of organic agriculture[J]. Science Advances, 2017, 3(3): e1602638 doi: 10.1126/sciadv.1602638
[32]孙玉芳, 陈宝雄, 金彬, 等. 有机管理对不同农田生境草本植物α、β和γ多样性的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1617-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1101&flag=1
SUN Y F, CHEN B X, JIN B, et al. Effects of organic management on the diversity of α, β and γ of herbaceous plants in different agricultural habitats[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1617-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1101&flag=1
[33]张永志, 徐建民, 柯欣, 等. 重金属Cu污染对土壤动物群落结构的影响[J]. 农业环境科学学报, 2006, 25(S1): 127-130
ZHANG Y Z, XU J M, KE X, et al. Effects of copper pollution on soil fauna community structure[J]. Journal of Agro-Environment Science, 2006, 25(S1): 127-130
[34]付作霖, 杨静, 李丹春, 等. 甘南亚高山典型森林生境地表步甲的群落结构及多样性分析[J]. 西北农林科技大学学报: 自然科学版, 2021, (5): 2-10
FU Z L, YANG J, LI D C, et al. Community structure and diversity analysis of ground foot beetles in typical alpine forest habitat in southern Gansu[J]. Journal of Northwest A & F University: Natural Science Edition, 2021, (5): 2-10
[35]HOLE D G, PERKINS A J, WILSON J D, et al. Does organic farming benefit biodiversity?[J]. Biological Conservation, 2005, 122(1): 113-130 doi: 10.1016/j.biocon.2004.07.018
[36]SCHMIDT M H, ROSCHEWITZ I, THIES C, et al. Differential effects of landscape and management on diversity and density of ground‐dwelling farmland spiders[J]. Journal of Applied Ecology, 2005, 42(2): 281-287 doi: 10.1111/j.1365-2664.2005.01014.x
[37]CASTAGNEYROL B, JACTEL H. Unraveling plant-animal diversity relationships: A meta-regression analysis[J]. Ecology, 2012, 93(9): 2115-2124 doi: 10.1890/11-1300.1
[38]万方浩, 陈常铭. 综防区和化防区稻田害虫-天敌群落组成及多样性的研究[J]. 生态学报, 1986, 6(2): 159-170 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB198602009.htm
WAN F H, CHEN C M. Studies on the structure of the rice pest-natural enemy community and diversity under IPM area and chemical control area[J]. Acta Ecologica Sinica, 1986, 6(2): 159-170 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB198602009.htm
[39]HENCKEL L, B?RGER L, MEISS H, et al. Organic fields sustain weed metacommunity dynamics in farmland landscapes[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1808): 20150002 doi: 10.1098/rspb.2015.0002
[40]O'SULLIVAN C M, GORMALLY M J. A comparison of ground beetle (Carabidae: Coleoptera) communities in an organic and conventional potato crop[J]. Biological Agriculture & Horticulture, 2002, 20(2): 99-110 doi: 10.1080/01448765.2002.9754954
[41]MARSHALL E J M, MOONEN A C. Field margins in northern Europe: Their functions and interactions with agriculture[J]. Agriculture, Ecosystems & Environment, 2002, 89(1/2): 5-21 http://europepmc.org/abstract/AGR/IND23301822
[42]GABRIEL D, SAIT S M, HODGSON J A, et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales[J]. Ecology Letters, 2010, 13(7): 858-869 doi: 10.1111/j.1461-0248.2010.01481.x
[43]LI X, LIU Y H, DUAN M C, et al. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape[J]. Agriculture, Ecosystems & Environment, 2018, 264: 54-62 http://smartsearch.nstl.gov.cn/paper_detail.html?id=29378f9d3760214abddd5f7a4c22fabe

相关话题/管理 农田 土壤 农业 生态