白娜玲1, 2,
郑宪清1, 2,
李双喜1, 2,
张娟琴1, 2,
张海韵1, 2,
周胜1, 3,
孙会峰1, 3,
吕卫光1, 2,,
1.上海市农业科学院生态环境保护研究所/上海市设施园艺技术重点实验室/上海市农业环境保护监测站 上海 201403
2.农业部上海农业环境与耕地保育科学观测实验站 上海 201403
3.上海低碳农业工程技术研究中心 上海 201403
基金项目: 国家重点研发计划项目2016YFD0200804
上海市科技兴农推广项目T20180414
上海市农业科学院卓越团队建设计划项目Nongke Chuang 2017(A-03)
详细信息
作者简介:张翰林, 主要研究方向为农田微生物驱动碳氮循环。E-mail: zhanghanlinchick@163.com
通讯作者:吕卫光, 主要研究方向为农田生态。E-mail: lvweiguang@saas.sh.cn
中图分类号:S154.3计量
文章访问数:310
HTML全文浏览量:17
PDF下载量:457
被引次数:0
出版历程
收稿日期:2020-06-26
录用日期:2020-11-23
刊出日期:2021-03-01
Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil
ZHANG Hanlin1, 2,,BAI Naling1, 2,
ZHENG Xianqing1, 2,
LI Shuangxi1, 2,
ZHANG Juanqin1, 2,
ZHANG Haiyun1, 2,
ZHOU Sheng1, 3,
SUN Huifeng1, 3,
LYU Weiguang1, 2,,
1. Eco-environmental Protection Institute of Shanghai Academy of Agricultural Sciences/Shanghai Key Laboratory of Horticultural Technology/Environmental Protection Monitoring Station of Shanghai City, Shanghai 201403, China
2. Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
3. Shanghai Low Carbon Agriculture Engineering Technology Research Center, Shanghai 201403, China
Funds: the National Key Research and Development Program of China2016YFD0200804
the Shanghai Agriculture Applied Technology Development Program, ChinaT20180414
the Outstanding Team Program of Shanghai Academy of Agricultural SciencesNongke Chuang 2017(A-03)
More Information
Corresponding author:LYU Weiguang, E-mail: lvweiguang@saas.sh.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探索秸秆还田与施肥方式2种农田措施对水稻-小麦(稻麦)轮作土壤微生物群落的影响,阐释其对土壤细菌和真菌群落结构和多样性的影响机制,本研究通过7年稻麦轮作长期定位监测试验,设置无肥空白(CK)、常规施肥(RT)、秸秆还田+常规施肥(RS)和秸秆还田+缓释肥(SS)4个处理,采用Illumina Miseq高通量测序技术,分析土壤细菌和真菌群落结构和多样性,探索影响微生物群落的主控环境因子。结果表明,SS作物产量在2016年和2017年分别比RT显著提高11.6%和8.2%(水稻)、4.8%和3.6%(小麦),与RS无显著差异。相比RT,秸秆还田处理显著降低了土壤pH,提升了土壤有机碳和铵态氮含量;与RS相比,SS处理提高了铵态氮含量。秸秆还田处理提升了真菌群落多样性,但对细菌群落多样性无显著影响。SS与RS在细菌真菌群落多样性方面均无显著差异。相关性分析表明,细菌群落多样性与土壤pH呈负相关,与总氮含量呈正相关;真菌群落多样性则与土壤有机碳含量显著正相关。NMDS分析表明,施肥对于细菌群落结构影响较大(55.61%),真菌群落结构则对秸秆还田响应更明显(26.94%)。与RT相比,秸秆还田显著提升了细菌放线菌门、绿弯菌门、厚壁菌门的相对丰度,同时显著提升了真菌中子囊菌门的相对丰度,降低了担子菌门和接合菌门的相对丰度,加强了土壤碳氮循环能力并抑制了病原菌。SS与RS相比,仅提升了真菌中子囊菌门的相对丰度。综上,秸秆还田配施缓释肥有助于维持或者提高土壤养分有效性、作物产量及细菌真菌群落多样性,可以促进土壤碳氮循环。
关键词:土壤微生物/
群落结构/
土壤养分/
秸秆还田/
缓释肥/
高通量测序
Abstract:Straw returning and slow-release fertilizers are widely used in agriculture to reduce non-point source pollution and improve nitrogen use efficiency. However, there are few studies on the effect of straw return combined with slow-release fertilizers on the soil microbial community. This study determined how straw returning combined with fertilization affected the bacterial and fungal communities in rice-wheat rotation soil and the underlying mechanisms. Based on a seven-year rice-wheat rotation system monitoring experiment, four treatments were selected: no fertilizer (CK), regular chemical fertilization (RT), straw returning combined with chemical fertilization (RS), and straw returning combined with slow-release fertilizer (SS). The Illumina MiSeq platform was used to evaluate the community structure and diversity of soil bacteria and fungi and to detect the primary environmental factors affecting the microbial community. The results showed that the SS rice and wheat yields in 2016 and 2017 were significantly higher than the RT yields (by 11.6% and 8.2% in rice, and 4.8% and 3.6% in wheat, respectively); there was no difference between SS and RS yields. Compared to RT, straw returning significantly decreased soil pH and increased soil organic carbon (SOC) and ammonium nitrogen (NH4+-N) contents; SS had more NH4+-N than RS. The fungal community diversity was higher with straw returning than with RT, but there was no difference in the bacterial community diversity among fertilization treatments; the bacterial and fungal community diversities were the same between RS and SS. Correlation analysis showed that the bacterial community diversity was negatively correlated with pH and positively correlated with soil total nitrogen content, while the fungal community diversity was positively correlated with SOC. Non-metric multidimensional scaling analysis showed that fertilization had a greater effect on the bacterial community structure (55.61%), and straw returning had a greater effect on the fungal community structure (26.94%). Proteobacteria, Chloroflexi, and Acidobacteria (in successive order) were the dominant phyla across all treatments, accounting for 66.07%–71.76% of the total bacterial sequence data. Ascomycota, Basidiomycota, and Zygomycota (in successive order) were the dominant phyla across all treatments, accounting for 88.05%–89.04% of the total fungal sequence data. Compared with RT, the treatments with straw returning significantly increased the relative abundance of Actinobacteria, Chloroflexi, and Firmicutes in the bacterial community, and significantly increased the relative abundance of Ascomycota and decreased the relative abundance of Basidiomycota and Zygomycota in the fungal community. Ecological function analysis of these bacterial and fungal communities showed that straw returning may enhance soil carbon and nitrogen cycling and inhibit pathogens. Compared with RS, SS only increased the relative abundance of Ascomycota in the fungal community; there were no other differences between the relative abundances of bacteria and fungi in RS and SS at the phylum level. Straw returning with slow-release fertilizers can help maintain or improve soil nutrient availability, crop yield, and the diversity of bacterial and fungal communities and can promote soil carbon and nitrogen cycling.
Key words:Soil microorganism/
Community structure/
Soil nutrient/
Straw returning/
Slow release fertilizer/
High throughput sequencing
HTML全文
图12015—2017年秸秆还田与施肥方式对水稻(a)和小麦(b)产量的影响
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。
Figure1.Effects of straw returning and fertilization on rice (a) and wheat (b) yields in 2015-2017
CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Different lowercase letters indicate significant differences among treatments in the same year at P < 0.05.
下载: 全尺寸图片幻灯片
图2秸秆还田与施肥方式对水稻-小麦轮作土壤细菌(a)和真菌(b)门水平群落组成的影响
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。
Figure2.Effects of straw returning and fertilization on community composition of soil bacteria (a) and fungi (b) in phylum level of rice-wheat rotation fields
CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.
下载: 全尺寸图片幻灯片
图3秸秆还田与施肥方式下水稻-小麦轮作土壤细菌(a)和真菌(b)LEfSe分析(LDA值> 3)
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。
Figure3.LEfSe analysis of soil bacterial (a) and fungal (b) taxa (LDA score > 3) of rice-wheat rotation fields under different treatments of straw returning and fertilization
CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.
下载: 全尺寸图片幻灯片
图4秸秆还田与施肥方式下水稻-小麦轮作土壤细菌(a)和真菌(b)群落NMDS分析
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。
Figure4.NMDS analysis of soil bacterial (a) and fungal (b) communities of rice-wheat rotation fields under different treatments of straw returning and fertilization
CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization.
下载: 全尺寸图片幻灯片
表1秸秆还田与施肥方式对水稻-小麦轮作土壤理化性质的影响
Table1.Soil properties of rice-wheat rotation fields under different treatments of straw returning and fertilization
处理 Treatment | pH | 土壤有机碳 Soil organiccarbon(g?kg-1) | 总氮 Totalnitrogen(g?kg-1) | 铵态氮 Ammonia nitrogen(mg?kg-1) | 硝态氮 Nitrate nitrogen(mg?kg-1) | 总磷 Total phosphorus(g?kg-1) | 有效磷 Available phosphorus(mg?kg-1) |
CK | 8.43±0.13a | 8.43±0.31c | 0.91±0.08b | 63.51±2.74c | 4.10±0.15a | 0.95±0.06b | 30.49±1.02c |
RT | 8.21±0.15b | 9.03±0.56b | 1.01±0.10a | 64.68±3.45c | 4.33±0.18a | 1.15±0.09a | 31.91±1.31bc |
RS | 8.03±0.16c | 10.52±0.55a | 1.04±0.09a | 75.60±3.11b | 4.42±0.21a | 1.12±0.08a | 33.12±1.25ab |
SS | 8.09±0.11c | 11.26±0.62a | 1.05±0.11a | 92.23±4.08a | 4.34±0.16a | 1.14±0.10a | 34.27±1.33a |
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。表中数据为3个数值的平均值±标准误; 同列数据后不同字母表示处理间差异显著(P < 0.05)。CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Date in the table are mean±SE. Values followed by different letters in a column are significantly different (P < 0.05). |
下载: 导出CSV
表2秸秆还田与施肥方式对水稻-小麦轮作土壤细菌和真菌群落多样性指数(Chao1和Shannon)的影响
Table2.Soil bacterial and fungal community diversity indexes (Chao 1 and Shannon) of rice-wheat rotation fields under different treatments of straw returning and fertilization
处理 | 细菌Bacteria | 真菌Fungi | |||
Chao1 | Shannon | Chao1 | Shannon | ||
CK | 2365±157b | 9.52±0.07b | 571±19b | 5.83±0.23b | |
RT | 2766±121a | 9.74±0.11a | 559±31b | 5.65±0.25b | |
RS | 2795±132a | 9.77±0.10a | 630±25a | 6.51±0.35a | |
SS | 2760±89a | 9.74±0.12a | 631±40a | 6.48±0.28a | |
CK: 不施肥空白; RT: 常规施肥; RS: 秸秆还田+常规施肥; SS: 秸秆还田+缓释肥。表中数据为3个数值的平均值±标准误; 同列数据后不同字母表示处理间差异显著(P < 0.05)。CK: no fertilizer; RT: conventional fertilization; RS: straw returning + conventional fertilization; SS: straw returning + slow-release fertilization. Date in the table are mean ± SE. Values followed by different letters in a column are significantly different (P < 0.05). |
下载: 导出CSV
表3水稻-小麦轮作土壤细菌和真菌多样性指数(Shannon和Chao1)与理化性质间的相关性分析
Table3.Correlation analysis between bacterial and fungal diversity indexes (Shannon and Chao1) and soil properties of rice-wheat rotation fields
指标 Index | pH | 土壤有机碳 Soil organiccarbon | 总氮 Totalnitrogen | 铵态氮 Ammonia nitrogen | 硝态氮 Nitratenitrogen | 总磷 Total phosphorus | 有效磷 Available phosphorus | |
细菌 Bacteria | Shannon | -0.838** | 0.516 | 0.766* | 0.409 | 0.635 | 0.629 | 0.500 |
Chao1 | -0.824** | 0.584 | 0.764* | 0.407 | 0.625 | 0.650 | 0.496 | |
真菌 Fungi | Shannon | -0.557 | 0.703* | 0.448 | 0.527 | 0.375 | 0.137 | 0.588 |
Chao1 | -0.576 | 0.725* | 0.479 | 0.553 | 0.396 | 0.176 | 0.535 | |
**和*分别表示P < 0.01和P < 0.05水平显著相关。** and * mean significant correlation at P < 0.01and P < 0.05 levels, respectively. |
下载: 导出CSV
参考文献
[1] | LI X B, HE H B, ZHANG X D, et al. Distinct responses of soil fungal and bacterial nitrate immobilization to land conversion from forest to agriculture[J]. Soil Biology and Biochemistry, 2019, 134: 81-89 doi: 10.1016/j.soilbio.2019.03.023 |
[2] | HAMM A C, TENUTA M, KRAUSE D O, et al. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer[J]. Applied Soil Ecology, 2016, 103: 61-71 doi: 10.1016/j.apsoil.2016.02.015 |
[3] | 王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm WANG X L, MA K, FU Y Z, et al. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 890-898 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202003024.htm |
[4] | SILVA M C P E, SEMENOV A V, SCHMITT H, et al. Microbe-mediated processes as indicators to establish the normal operating range of soil functioning[J]. Soil Biology and Biochemistry, 2013, 57: 995-1002 doi: 10.1016/j.soilbio.2012.10.002 |
[5] | HOLLISTER E B, SCHADT C W, PALUMBO A V, et al. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains[J]. Soil Biology and Biochemistry, 2010, 42(10): 1816-1824 doi: 10.1016/j.soilbio.2010.06.022 |
[6] | 逯非, 王效科, 韩冰, 等. 稻田秸秆还田: 土壤固碳与甲烷增排[J]. 应用生态学报, 2010, 21(1): 99-108 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201001016.htm LU F, WANG X K, HAN B, et al. Straw return to rice paddy: Soil carbon sequestration and increased methane emission[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 99-108 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201001016.htm |
[7] | 郭梨锦, 曹凑贵, 张枝盛, 等. 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J]. 农业环境科学学报, 2013, 32(8): 1577-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201308015.htm GUO L J, CAO C G, ZHANG Z S, et al. Short-term effects of tillage practices and wheat-straw returned to rice fields on topsoil microbial community structure and microbial diversity in central China[J]. Journal of Agro-Environment Science, 2013, 32(8): 1577-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201308015.htm |
[8] | SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9-18 doi: 10.1016/j.soilbio.2015.05.007 |
[9] | CHEN Z M, WANG H Y, LIU X W, et al. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 165: 121-127 doi: 10.1016/j.still.2016.07.018 |
[10] | 萨如拉, 杨恒山, 邰继承, 等. 秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响[J]. 中国生态农业学报(中英文), 2020, 28(7): 1061-1071 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0713&flag=1 SA R L, YANG H S, TAI J C, et al. Effect of straw maturing agents on fungal diversity in soil with different textures soil under return straw conditions[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1061-1071 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0713&flag=1 |
[11] | YANG Y C, ZHANG M, LI Y C, et al. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield[J]. Soil Science Society of America Journal, 2012, 76(6): 2307-2317 doi: 10.2136/sssaj2012.0173 |
[12] | PAN P, JIANG H M, ZHANG J F, et al. Shifts in soil bacterial communities induced by the controlled-release fertilizer coatings[J]. Journal of Integrative Agriculture, 2016, 15(12): 2855-2864 doi: 10.1016/S2095-3119(15)61309-0 |
[13] | 孙会峰, 周胜, 付子轼, 等. 秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响[J]. 中国稻米, 2015, 21(4): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201504021.htm SUN H F, ZHOU S, FU Z S, et al. Effects of application of controlled-release fertilizer combined with wheat straw on rice yield and nitrogen use efficiency[J]. China Rice, 2015, 21(4): 95-98 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201504021.htm |
[14] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1981: 62?142 Nanjing Institute of Soil Science, Chinese Academy of Sciences. Soil Physical and Chemical Property Analysis[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1981: 62?142 |
[15] | ZHOU J Z, WU L Y, DENG Y, et al. Reproducibility and quantitation of amplicon sequencing-based detection[J]. The ISME Journal, 2011, 5(8): 1303-1313 doi: 10.1038/ismej.2011.11 |
[16] | SCHOCH C L, SEIFERT K A, HUHNDORF S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241-6246 doi: 10.1073/pnas.1117018109 |
[17] | HU X J, LIU J J, WEI D, et al. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of Northeast China[J]. Pedosphere, 2018, 28(5): 751-763 doi: 10.1016/S1002-0160(18)60040-2 |
[18] | ZHU J, PENG H, JI X H, et al. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils[J]. European Journal of Soil Biology, 2019, 94: 103116 doi: 10.1016/j.ejsobi.2019.103116 |
[19] | ABUJABHAH I S, BOUND S A, DOYLE R, et al. Effects of biochar and compost amendments on soil physico- chemical properties and the total community within a temperate agricultural soil[J]. Applied Soil Ecology, 2016, 98: 243-253 doi: 10.1016/j.apsoil.2015.10.021 |
[20] | WU Y P, WU J X, MA Y J, et al. Dynamic changes in soil chemical properties and microbial community structure in response to different nitrogen fertilizers in an acidified celery soil[J]. Soil Ecology Letters, 2019, 1(3/4): 105-113 doi: 10.1007/s42832-019-0012-z |
[21] | 张鑫, 周卫, 艾超, 等. 秸秆还田下氮肥运筹对夏玉米不同时期土壤酶活性及细菌群落结构的影响[J]. 植物营养与肥料学报, 2020, 26(2): 295-306 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202002010.htm ZHANG X, ZHOU W, AI C, et al. Effects of nitrogen management on soil enzyme activities and bacterial community structure in summer maize growing stagesunder straw incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 295-306 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202002010.htm |
[22] | 周阳, 黄旭, 赵海燕, 等. 麦秸秆和沼液配施对水稻苗期生长和土壤微生物的调控[J]. 土壤学报, 2020, 57(2): 479-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202002021.htm ZHOU Y, HUANG X, ZHAO H Y, et al. Regulation of wheat straw and biogas slurry application on rice seedling growth and soil microorganism[J]. Acta Pedologica Sinica, 2020, 57(2): 479-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202002021.htm |
[23] | 张鹏, 贾志宽, 王维, 等. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响[J]. 中国农业科学, 2012, 45(8): 1513-1520 doi: 10.3864/j.issn.0578-1752.2012.08.007 ZHANG P, JIA Z K, WANG W, et al. Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningxia of China[J]. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520 doi: 10.3864/j.issn.0578-1752.2012.08.007 |
[24] | KAISER K, WEMHEUER B, KOROLKOW V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests[J]. Scientific Reports, 2016, 6: 33696 doi: 10.1038/srep33696 |
[25] | 何敏红, 何跃军, 吴春玉, 等. 石漠化强度对喀斯特植被演替过程土壤真菌组成及多样性的影响[J]. 菌物学报, 2019, 38(4): 471-484 https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201904002.htm HE M H, HE Y J, WU C Y, et al. Effects of rocky desertification intensity on soil fungal composition and diversity during karst vegetation succession[J]. Mycosystema, 2019, 38(4): 471-484 https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201904002.htm |
[26] | FAN F L, YIN C, TANG Y J, et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP[J]. Soil Biology and Biochemistry, 2014, 70: 12-21 doi: 10.1016/j.soilbio.2013.12.002 |
[27] | TRIVEDI P, ANDERSON I C, SINGH B K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction[J]. Trends in Microbiology, 2013, 21(12): 641-651 doi: 10.1016/j.tim.2013.09.005 |
[28] | XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5): 2534-2542 https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113063302.html |
[29] | ZHAO S C, QIU S J, XU X P, et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils[J]. Applied Soil Ecology, 2019, 138: 123-133 http://www.sciencedirect.com/science/article/pii/S092913931830876X |
[30] | SOUZA R C, MENDES I C, REIS-JUNIOR F B, et al. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?[J]. BMC Microbiology, 2016, 16: 42 http://europepmc.org/articles/PMC4794851/ |
[31] | WANG F, LIANG Y T, JIANG Y J, et al. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling[J]. Scientific Reports, 2015, 5: 14345 http://www.nature.com/articles/srep14345 |
[32] | SUN Q Q, WANG R, HU Y X, et al. Spatial variations of soil respiration and temperature sensitivity along a steep slope of the semiarid Loess Plateau[J]. PLoS One, 2018, 13(4): e0195400 http://europepmc.org/abstract/MED/29624600 |
[33] | PROCTER A C, ELLIS J C, FAY P A, et al. Fungal community responses to past and future atmospheric CO2 differ by soil type[J]. Applied and Environmental Microbiology, 2014, 80(23): 7364-7377 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25239904 |
[34] | SPATAFORA J W, CHANG Y, BENNY G L, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data[J]. Mycologia, 2016, 108(5): 1028-1046 http://www.ncbi.nlm.nih.gov/pubmed/27738200 |
[35] | GRYGANSKYI A P, HUMBER R A, SMITH M E, et al. Phylogenetic lineages in Entomophthoromycota[J]. Persoonia-Molecular Phylogeny and Evolution of Fungi, 2013, 30(1): 94-105 http://europepmc.org/articles/PMC3734969/ |