张树兰2,
党廷辉1,
郭李萍3,
李丽君4,
高鹏程2,
王蕊1
1.西北农林科技大学水土保持研究所 杨凌 712100
2.西北农林科技大学资源环境学院 杨凌 712100
3.中国农业科学院农业环境与可持续发展研究所 北京 100081
4.山西农业大学资源环境学院/山西省土壤环境与养分资源重点实验室 太原 030031
基金项目: 国家重点研发计划项目2016YFD0800105
详细信息
作者简介:郭胜利, 研究方向为农田生态系统土壤碳氮素循环。E-mail:slguo@ms.iswc.ac.cn
中图分类号:S145.6计量
文章访问数:291
HTML全文浏览量:10
PDF下载量:298
被引次数:0
出版历程
收稿日期:2020-08-04
录用日期:2020-09-01
刊出日期:2021-01-01
Effects of field management practices on nitrogen and phosphate leaching in the cinnamon soil area of China
GUO Shengli1,,,ZHANG Shulan2,
DANG Tinghui1,
GUO Liping3,
LI Lijun4,
GAO Pengcheng2,
WANG Rui1
1. Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, China
2. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
3. Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
4. College of Resources and Environment, Shanxi Agricultural University/Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031, China
Funds: the National Key Research and Development Project of China2016YFD0800105
More Information
Corresponding author:GUO Shengli, E-mail: slguo@ms.iswc.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:自20世纪90年代以来,持续过量氮磷化肥投入导致农业面源污染日益严重,了解农田土壤氮磷淋溶特征是降低地下水污染的基础。基于田间调查、长期定位肥料试验和田间试验,分析褐土区氮磷的盈余状况,阐明该区农田土壤氮磷的盈余变化、淋溶特征;评价田间管理措施对农田土壤氮磷淋溶的影响。结果表明,典型褐土区关中平原过量施氮的土壤达到83%以上,大量土壤硝态氮已经迁移到100 cm土层以下,15%的水井地下水的硝态氮含量超过10 mg·L-1(WHO饮用水标准);80%耕层土壤有效磷(Olsen-P)含量已超过20 mg·kg-1,富磷土壤已出现可溶性磷素向耕层以下迁移的现象。氮肥和磷肥的投入量、氮磷吸收量和土壤氮磷残留量之间存在着3个发展阶段:环境友好-资源高效阶段、环境低风险-资源低效阶段和环境有害-资源无效阶段。与当地常规水肥投入量相比,在保证产量的前提下,化肥减量、降低灌溉量、施用生物炭或秸秆还田都可以降低氮磷淋失量;其中化肥减量、降低灌溉可显著降低氮磷的淋失,其次是施用生物炭和秸秆。施用秸秆条件下,阻控硝态氮淋失与微生物生物量碳氮的提高、土壤硝化势降低或反硝化势升高有关。此外,需要关注褐土区粮果复合系统中土壤氮磷淋溶的环境效应、地下水硝酸盐污染的溯源等问题。
关键词:褐土区/
农田土壤/
蔬菜地土壤/
氮磷淋失/
阻控措施
Abstract:Excessive application of nitrogen (N) and phosphate (P) fertilizers have increasingly caused agricultural nonpoint source pollution and groundwater contamination in China since the 1990s. Understanding N and P leaching is critical for reducing groundwater contamination. Field survey data, long-term experimental data, and recent experimental results were used to investigate N and P leaching from arable cinnamon soil across northern China. The results suggested that wheat and corn yield decreased with increasing N or P fertilization in a wheat-corn rotation system. Large amounts of nitrate accumulated in the soil across the region, and the accumulation amount and its downward movement was a potential risk to groundwater. The Olsen-P surplus (>20 mg·kg-1) accounted for 80% of the arable soils in the region. There were strong relationships between NP fertilization rates, crop yield, and residual NP amounts and were into three phases: efficient NP-environmentally friendly phase, low NP efficiency-environmentally low risk phase, and inefficient NP-environmentally harmful phase. Optimized water and fertilizer use ensured crop yield, improved nitrogen use efficiency, and reduced nitrogen leaching losses, but the effects of biochar application and straw incorporation were inconsistent. The nitrate leaching-preventing effects of crop straw incorporation was resulted from soil microbial biomass increase, nitrification potential decreased or denitrification potential increase. Other issues also require investigation, such as tracing regional sources of underground water nitrate pollution, the effects of legacy NP accumulation from excess river anthropogenic inputs, and the environmental consequences of legacy NP accumulation in crop-fruit ecological agriculture.
Key words:Cinnamon soil area/
Cropland soil/
Vegetable land soil/
NP leaching/
Mitigation measures
HTML全文
图1关中盆地不同氮磷肥施用量冬小麦-夏玉米种植体系的作物产量
Figure1.Crops yields of wheat-corn rotation system under different application rates of nitrogen and phosphorus in Guanzhong Basin
下载: 全尺寸图片幻灯片
图2关中盆地农田土壤硝态氮剖面分布与耕层土壤有效磷含量分布
Figure2.Nitrate nitrogen content in soil profile and available phosphorus (Olsen-P) content in topsoil in Guanzhong Basin
下载: 全尺寸图片幻灯片
图3关中盆地地下水中氮磷含量分布
Figure3.Nitrogen and phosphorus concentrations and distribution in underground water in Guanzhong Basin
下载: 全尺寸图片幻灯片
图4长期氮磷投入条件下作物产量、土壤氮磷残留量和吸收量的关系
a)不同施氮水平下作物产量、地上部氮素吸收量和土体硝态氮残留量, N0、N45、N90、N135和N180指施纯氮量0 kg·hm-2、45 kg·hm-2、90 kg·hm-2、135 kg·hm-2和180 kg·hm-2处理; b)不同施氮水平下产量与土壤硝态氮残留量的制约关系; c)不同施磷水平下作物产量、地上部磷素吸收量和土壤有效磷, P0、P45、P90、P135和P180指施P2O5量0 kg·hm-2、45 kg·hm-2、90 kg·hm-2、135 kg·hm-2和180 kg·hm-2处理; d)土壤有效磷含量与作物产量的关系。
Figure4.Relationships among crop yield, soil nitrogen and phosphorus residual and uptake by crops under long-term fertilization
a) Crop yield, nitrogen uptake in aboveground and nitrate nitrogen accumulation under long-term different nitrogen application rates; N0, N45, N90, N135 and N180 are nitrogen application rates of 0 kg·hm-2, 45 kg·hm-2, 90 kg·hm-2, 135 kg·hm-2 and 180 kg·hm-2, respectively. b) Relationship between crop yield and soil nitrate nitrogen accumulation under long-term different nitrogen application rates. c) Crop yield, phosphorus uptake in aboveground and soil Olsen-P content under long-term different phosphorus application rates; P0, P45, P90, P135 and P180 are phosphorus (P2O5) application rates of 0 kg·hm-2, 45 kg·hm-2, 90 kg·hm-2, 135 kg·hm-2 and 180 kg·hm-2, respectively. d) Relationship between crop yield and soil Olsen-P accumulation.
下载: 全尺寸图片幻灯片
图5春玉米种植体系中添加秸秆条件下土壤微生物量碳、氮和硝化潜势的响应
ConF、ConF+S、OptF和OptF+S分别为常规施肥、常规施肥+秸秆还田、优化施肥和优化施肥+秸秆还田处理, 详细介绍见表 1。第1行图为施肥后3 d的测定值, 第2行图是玉米吐丝期测定值。
Figure5.Response of soil microbial biomass carbon and nitrogen contents and nitrification potential to straw incorporation in spring corn cropping system
ConF, ConF+S, OptF and OptF+S are treatments of conventional fertilization, conventional fertilization + straw incorporation, optimized fertilization and optimized fertilization + straw incorporation; the detail description of each treatment is shown in the table 1. The first row figures show the data of 3 days after fertilization; the second row figures show the data at the silking stage of corn.
下载: 全尺寸图片幻灯片
图6秸秆还田对春玉米种植体系中0~300 cm土壤剖面硝态氮累积量影响(陕西长武)
ConF、ConF+S、OptF和OptF+S为常规肥、常规肥+秸秆还田、优化施肥、优化施肥+秸秆还田处理, 详细介绍见表 1。
Figure6.Effects of straw incorporation on NO3--N accumulation in 0-300 cm soil profile of spring corn copping system (Changewu, Shaanxi Province)
ConF, ConF+S, OptF and OptF+S are treatments of conventional fertilization, conventional fertilization + straw incorporation, optimized fertilization and optimized fertilization + straw incorporation; the detail description of each treatment are shown in the table 1.
下载: 全尺寸图片幻灯片
图7阻控措施对设施蔬菜地土壤硝态氮分布的影响
Con、Con-F、Con-W、Con+B和Opt+B分别为常规水肥、减量施肥+常规灌溉、减量灌溉+常规肥和常规水肥+生物炭和优化水肥+生物炭处理, 各处理的详细介绍见表 1。
Figure7.Effects of mitigation measures on NO3--N distribution in soil profile of greenhouse vegetable cropping system
Con, Con-F, Con-W, Con+B and Opt+B are treatments of conventional practice, reduced fertilization + conventional irrigation, reduced irrigation + conventional fertilization, conventional practice + biochar, and optimum practice + biochar; the detail description of each treatment is shown in the table 1.
下载: 全尺寸图片幻灯片
表1褐土区农田土壤氮磷淋失阻控措施试验方案
Table1.Experiment design of the mitigations measures of nitrogen and phosphorus leaching in arable soils in cinnamon soil areas
种植体系/地点 Cropping system/site | 处理 Treatment | 施氮量1) N application rate1) [kg(N)·hm–2] | 施磷量1) P application rate1) [kg(P2O5)·hm–2] | 灌溉量 Irrigation | 秸秆 Straw (t·hm–2) | 生物炭 Biochar (t·hm–2) | 产量 Yield (t·hm–2) |
冬小麦-夏玉米轮作/陕西杨凌 Winter wheat- summer maize/Yangling, Shaanxi | 常规水肥 Conventional practice (Con) | 490 | 225 | 常规灌溉 Conventional irrigation | — | — | 16.0 |
常规肥+减量灌溉 Conventional fertilization + reduced irrigation (Con-W) | 490 | 225 | 80%常规灌溉 80% conventional irrigation | — | — | 15.0 | |
常规灌溉+减量施肥 Conventional irrigation + reduced fertilization (Con-F) | 330 | 120 | 常规灌溉 Conventional irrigation | — | — | 14.0 | |
优化水肥 Optimum practice (Opt) | 330 | 120 | 80%常规灌溉 80% conventional irrigation | 15 | 14.0 | ||
优化水肥+生物炭 Optimum practice + biochar (Opt+B) | 150 | 120 | 15 | 14.5 | |||
春玉米连作/陕西长武 Spring maize/ Changwu, Shaanxi | 常规肥 Conventional fertilization (ConF) | 250 | 120 | 雨养Rainfed | — | — | 13.1 |
优化施肥 Optimized fertilization (OptF) | 200 | 120 | 雨养Rainfed | — | — | 13.9 | |
常规肥+秸秆 Conventional fertilization + straw incorporation (ConF+S) | 100 | 120 | 雨养Rainfed | 全部秸秆2) All straws2) | — | 14.3 | |
优化施肥+秸秆80% Optimized fertilization + 80% straw incorporation (OptF+S) | 130 | 120 | 雨养Rainfed | 80%秸秆2) 80% straw2) | — | 14.9 | |
露地菜地/河北保定Open-field vegetable/Baoding, Hebei | 常规肥 Conventional fertilization (ConF) | 1100 | 200 | 常规灌溉 Conventional irrigation | — | — | 195.0 |
优化施肥 Optimized fertilization (OptF) | 880 | 200 | — | 193.0 | |||
优化施肥+生物炭 Optimized fertilization + biochar (OptF+B) | 880 | 200 | 28 | — | 177.0 | ||
优化施肥+秸秆 Optimized fertilization + straw (OptF+S) | 880 | 200 | 6 | — | 282.0 | ||
优化施肥+减量灌溉 Optimized practice (Opt) | 880 | 200 | 70%常规灌溉 70% conventional irrigation | — | — | 175.0 | |
设施菜地/山西太谷 Facility vegetable/Taigu, Shanxi | 常规水肥 Conventional practice (Con) | 403 | 257 | 常规灌溉 Conventional irrigation | — | — | 144.0 |
减量施肥+常规灌溉 Reduced fertilization + conventional irrigation (Con-F) | 322 | 206 | — | — | 141.8 | ||
减量灌溉+常规肥 Reduced irrigation + conventional fertilization (Con-W) | 403 | 257 | 80%常规灌溉 80% conventional irrigation | — | — | 141.3 | |
常规水肥+生物炭 Conventional practice + biochar (Con+B) | 403 | 257 | 常规灌溉 Conventional irrigation | — | 30 | 144.5 | |
优化水肥+生物炭 Optimum practice + biochar (Opt+B) | 322 | 206 | 80%常规灌溉 80% conventional irrigation | — | 30 | 144.8 | |
1)供试氮肥为尿素(含氮46.4%), 磷肥为过磷酸钙(含P2O5 16%); 2)春玉米种植体系中, 秸秆利用当地秋收后的全部玉米秸秆, 开沟整秸埋入30 cm深度土壤, 与当地农机旋耕深度一致。1) Nitrogen fertilizer is urea (containing 46% N), phosphate fertilizer is superphosphate form (containing 16% P2O5). 2) In the spring maize cropping system, aboveground of harvested maize are incorporated into the 30 cm deep soil, which is the plowing depth of the local machine. |
下载: 导出CSV
表22016—2018年度水肥管理对小麦-玉米轮作系统周年氮素淋失量的影响
Table2.Effects of water and nutrient management on annual nitrogen leaching loss of winter wheat and summer maize rotation in 2016–2018 ?
处理 Treatment | 2016—2017 | 2017—2018 | |||||||
NO3--N | NO4+-N | 有机氮 Organic nitrogen | 总氮 Total nitrogen | NO3--N | NO4+-N | 有机氮 Organic nitrogen | 总氮 Total nitrogen | ||
常规水肥 Conventional practice (Con) | 1.16 | 0.15 | 77.63 | 78.9 | 1.01 | 0.02 | 10.81 | 11.84 | |
减量灌溉 Conventional fertilization + reduced irrigation (Con-W) | 1.71 | 0.16 | 59.97 | 61.8 | 1.23 | 0.02 | 9.80 | 11.05 | |
减量施肥 Conventional irrigation + reduced fertilization (Con-F) | 0.93 | 0.25 | 63.87 | 65.1 | 0.96 | 0.02 | 9.99 | 10.97 | |
优化水肥 Optimum practice (Opt) | 1.04 | 0.20 | 64.10 | 65.3 | 0.44 | 0.01 | 10.20 | 10.65 | |
优化水肥+生物炭 Optimum practice + biochar (Opt+B) | 0.75 | 0.09 | 41.64 | 42.5 | 0.13 | 0.02 | 8.52 | 8.67 | |
每个处理的详细介绍见表 1。The detail description of each treatment is shown in the table 1. |
下载: 导出CSV
表3不同管理措施下露地菜地氮肥在土壤剖面的残留和淋溶特征
Table3.Nitrogen residue and leaching under different management practices in soil profile of open vegetable field ?
处理 Treatment | 氮输入 Nitrogen input | 氮输出和残留 Nitrogen output and residue | ||||||
肥料氮 Fertilizer nitrogen | 氮沉降 Nitrogen deposition | 非共生固氮 Asymbiotic nitrogen fixation | 地上部吸收 Aboveground uptake | 淋溶 Leached nitrogen | 0~80 cm土壤残留 Residual in 0-80 cm soil | 80~200 cm土壤残留 Residual in 80-200 cm soil | ||
常规施肥 Conventional fertilization (ConF) | 1100 | 31.4 | 15 | 573.6 | 171.7 | 151.0 | 221.2 | |
优化施肥 Optimized fertilization (OptF) | 880 | 31.4 | 15 | 529.2 | 130.7 | 122.4 | 134.4 | |
优化施肥+生物炭 Optimized fertilization + biochar (OptF+B) | 880 | 31.4 | 15 | 635.0 | 97.8 | 156.3 | 237.4 | |
优化施肥+秸秆 Optimized fertilization + straw (OptF+S) | 880 | 31.4 | 15 | 562.3 | 112.8 | 142.6 | 165.8 | |
优化施肥+减量灌溉 Optimum practice (Opt) | 880 | 31.4 | 15 | 554.0 | 97.7 | 165.1 | 196.2 | |
每个处理的详细介绍见表 1。The detail description of each treatment is shown in the table 1. |
下载: 导出CSV
参考文献
[1] | BOUWMAN L, GOLDEWIJK K K, VAN DER HOEK K W, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52):20882-20887 doi: 10.1073/pnas.1012878108 |
[2] | LASSALETTA L, BILLEN G, GRIZZETTI B, et al. 50 Year trends in nitrogen use efficiency of world cropping systems:The relationship between yield and nitrogen input to cropland[J]. Environmental Research Letters, 2014, 9(10):105011 doi: 10.1088/1748-9326/9/10/105011 |
[3] | VAN METER K J, BASU N B, VEENSTRA J J, et al. The nitrogen legacy:Emerging evidence of nitrogen accumulation in anthropogenic landscapes[J]. Environmental Research Letters, 2016, 11(3):035014 doi: 10.1088/1748-9326/11/3/035014 |
[4] | SWANEY D P, HONG B, TI C P, et al. Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters:A brief overview[J]. Current Opinion in Environmental Sustainability, 2012, 4(2):203-211 doi: 10.1016/j.cosust.2012.03.004 |
[5] | TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3):523-534 doi: 10.1046/j.1365-2664.2003.00820.x |
[6] | SATTARI S Z, BOUWMAN A F, GILLER K E, et al. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6348-6353 doi: 10.1073/pnas.1113675109 |
[7] | LI H G, LIU J, LI G H, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. AMBIO, 2015, 44(S2):S274-S285 doi: 10.1007/s13280-015-0633-0 |
[8] | MA J, LIU Y, HE W, et al. The long-term soil phosphorus balance across Chinese arable land[J]. Soil Use and Management, 2018, 34(3):306-315 doi: 10.1111/sum.12438 |
[9] | ERISMAN J W, GALLOWAY J N, SEITZINGER S, et al. Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621):20130116 doi: 10.1098/rstb.2013.0116 |
[10] | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621):20130164 doi: 10.1098/rstb.2013.0164 |
[11] | GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296 doi: 10.1038/nature06592 |
[12] | TOMICH T P, BRODT S B, DAHLGREN R A. The California nitrogen assessment:Challenges and solutions for people, agriculture, and the environment[M]. Oakland, CA:University of California Press, 2016 |
[13] | CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523):486-489 doi: 10.1038/nature13609 |
[14] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 doi: 10.1073/pnas.0813417106 |
[15] | ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580):51-59 doi: 10.1038/nature15743 |
[16] | 张维理, 武淑霞, 冀宏杰, 等.中国农业面源污染形势估计及控制对策Ⅰ. 21世纪初期中国农业面源污染的形势估计[J].中国农业科学, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 ZHANG W L, WU S X, JI H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅰ. Estimation of agricultural non-point source pollution in China in Early 21 Century[J]. Scientia Agricultura Sinica, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 |
[17] | 马洪斌, 李晓欣, 胡春胜.中国地下水硝态氮污染现状研究[J].土壤通报, 2012, 43(6):1532-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm MA H B, LI X X, HU C S. Status of nitrate nitrogen contamination of groundwater in China[J]. Chinese Journal of Soil Science, 2012, 43(6):1532-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm |
[18] | 张维理, 田哲旭, 张宁, 等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012 ZHANG W L, TIAN Z X, ZHANG N, et al. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China[J]. Journal of Plant Nutrition and Fertilizers, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012 |
[19] | 同延安, 吕殿青.灌区土壤中氮素平衡与硝态氮淋失[J].陕西农业科学, 1994, (5):12-13 https://www.cnki.com.cn/Article/CJFDTOTAL-SNKX405.009.htm TONG Y A, LYU D Q. Nitrogen balance and nitrate-N leaching in irrigated area[J]. Shaanxi Agriculture Science, 1994, (5):12-13 https://www.cnki.com.cn/Article/CJFDTOTAL-SNKX405.009.htm |
[20] | 郭胜利, 张文菊, 党廷辉, 等.干旱半干旱地区农田土壤NO3-N深层积累及其影响因素[J].地球科学进展, 2003, 18(4):584-591 doi: 10.3321/j.issn:1001-8166.2003.04.015 GUO S L, ZHANG W J, DANG T H, et al. Accumulation of NO3-N in deep layers of dry farmland and its affecting factors in arid and semi-arid areas[J]. Advance in Earth Sciences, 2003, 18(4):584-591 doi: 10.3321/j.issn:1001-8166.2003.04.015 |
[21] | 吕殿青, 同延安, 孙本华, 等.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报, 1998, 4(1):8-15 doi: 10.3321/j.issn:1008-505X.1998.01.002 LYU D Q, TONG Y A, SUN B H, et al. Study on effect of nitrogen fertilizer use on environment pollution[J]. Journal of Plant Nutrition and Fertilizers, 1998, 4(1):8-15 doi: 10.3321/j.issn:1008-505X.1998.01.002 |
[22] | 孙根年, 吴晓娟. 20年来西安城区地下水污染的时空变化分析[J].陕西师范大学学报:自然科学版, 2005, 33(2):110-114 https://www.cnki.com.cn/Article/CJFDTOTAL-SXSZ200502030.htm SUN G N, WU X J. Space-time change analysis of groundwater pollution in Xi'an City from 1985 to 2003[J]. Journal of Shaanxi Normal University:Natural Science Edition, 2005, 33(2):110-114 https://www.cnki.com.cn/Article/CJFDTOTAL-SXSZ200502030.htm |
[23] | 段磊, 王文科, 孙亚乔, 等.关中盆地浅层地下水氮污染的健康风险评价[J].水文地质工程地质, 2011, 38(3):92-97 doi: 10.3969/j.issn.1000-3665.2011.03.017 DUAN L, WANG W K, SUN Y Q, et al. Health risk assessment of "three nitrogen" in shallow groundwater in the Guanzhong Basin[J]. Hydrogeology & Engineering Geology, 2011, 38(3):92-97 doi: 10.3969/j.issn.1000-3665.2011.03.017 |
[24] | 段磊, 王文科, 杨晓婷, 等.关中盆地浅层地下水氮污染的时空变化规律及其防治措施[J].干旱区资源与环境, 2011, 25(8):133-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201108025.htm DUAN L, WANG W K, YANG X T, et al. Temporal and spatial variation of "three nitrogen" on shallow groundwater in Guanzhong Basin and its control measures[J]. Journal of Arid Land Resources and Environment, 2011, 25(8):133-137 https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201108025.htm |
[25] | 党廷辉, 郭胜利, 樊军, 等.长期施肥条件下黄土旱塬土壤NO3--N的淋溶分布规律[J].应用生态学报, 2003, 14(8):1265-1268 doi: 10.3321/j.issn:1001-9332.2003.08.012 DANG T H, GUO S L, FAN J, et al.NO3--N leaching and distribution in soil profile in dry highland of loess plateau under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2003, 14(8):1265-1268 doi: 10.3321/j.issn:1001-9332.2003.08.012 |
[26] | 郭胜利, 郝明德, 党廷辉.黄土高原沟壑区小流域土壤NO3--N的积累特征及其影响因素[J].自然资源学报, 2003, 18(1):37-43 doi: 10.3321/j.issn:1000-3037.2003.01.006 GUO S L, HAO M D, DANG T H.NO3--N accumulation and its affecting factors in small watershed in gully region of Loess Plateau[J]. Journal of Natural Resources, 2003, 18(1):37-43 doi: 10.3321/j.issn:1000-3037.2003.01.006 |
[27] | 郭胜利, 党廷辉, 郝明德.施肥对半干旱地区小麦产量、NO3--N累积和水分平衡的影响[J].中国农业科学, 2005, 38(4):754-760 doi: 10.3321/j.issn:0578-1752.2005.04.018 GUO S L, DANG T H, HAO M D. Effects of fertilization on wheat yield, NO3--N accumulation and soil water content in semi-arid area of China[J]. Scientia Agricultura Sinica, 2005, 38(4):754-760 doi: 10.3321/j.issn:0578-1752.2005.04.018 |
[28] | 郭胜利, 车升国, 梁伟, 等.小流域土壤磷的积累特征及其环境效应——以黄土高原沟壑区王东沟小流域为例[J].自然资源学报, 2009, 24(7):1171-1180 doi: 10.3321/j.issn:1000-3037.2009.07.005 GUO S L, CHE S G, LIANG W, et al. Phosphorus accumulation in soils of a catchment on the loess plateau and potential environmental implications[J]. Journal of Natural Resources, 2009, 24(7):1171-1180 doi: 10.3321/j.issn:1000-3037.2009.07.005 |
[29] | GUO S L, WU J S, DANG T H, et al. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China[J]. Plant and Soil, 2010, 330(1):1-13 http://www.irgrid.ac.cn/handle/1471x/516835?mode=full&submit_simple=Show+full+item+record |
[30] | 李鼎新.关中NO3--N土磷素状况及影响磷素有效性因子的研究[J].土壤通报, 1980, (6):1-4 LI D X. Soil phosphorus contents and its affecting factors to soil phosphorous availability in the Lou soil of Guanzhong Plain[J]. Chinese Journal of Soil Science, 1980, (6):1-4 |
[31] | 李祖荫.石灰性土壤中碳酸钙在固磷作用中的地位[J].西北农学院学报, 1981, (2):29-36 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY198102002.htm LI Z Y. The position of lime-soil calcium carbonate in phosphorus fixation[J]. Journal of Northwest Agriculture College, 1981, (2):29-36 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY198102002.htm |
[32] | 李祖萌, 刘军, 孔晓玲.石灰性土壤中粘粒与碳酸钙的固磷作用[J].土壤肥料, 1983, (2):13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL198302009.htm LI Z Y, LIU J, KONG X L. Fixation of phosphorus through soil clay and calcium carbonate in calcareous soil[J]. Soil and Fertilizer Sciences in China, 1983, (2):13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL198302009.htm |
[33] | 李祖荫, 吕家珑.碳酸钙与物理粘粒固磷特性的研究[J].土壤, 1995, 27(6):304-310 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA506.005.htm LI Z Y, LYU J L. Effects of clay and calcium carbonate on phosphorus fixation[J]. Soils, 1995, 27(6):304-310 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA506.005.htm |
[34] | 彭琳, 彭祥林.黄土地区土壤中磷的含量分布、形态转化与磷肥合理施用[J].土壤学报, 1989, 26(4):344-352 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198904005.htm PENG L, PENG X L. Studies on contents distribution forms and trans-formation of soil phosphorus and the rational application of phosphorous fertilizer in loessial region[J]. Acta Pedologica Sinica, 1989, 26(4):344-352 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198904005.htm |
[35] | GUO S L, DANG T H, HAO M D. Phosphorus changes and sorption characteristics in a calcareous soil under long-term fertilization[J]. Pedosphere, 2008, 18(2):248-256 doi: 10.1016/S1002-0160(08)60014-4 |
[36] | WANG R, GUO S L, LI N N, et al. Phosphorus accumulation and sorption in calcareous soil under long-term fertilization[J]. PLoS One, 2015, 10(8):e0135160 doi: 10.1371/journal.pone.0135160 |
[37] | 姜桂花.关中盆地水污染现状与防治对策[J].地下水, 2002, 24(2):94-95 doi: 10.3969/j.issn.1004-1184.2002.02.016 JIANG G H. Groundwater polluted situation & preventive method in Guanzhong basin[J]. Groundwater, 2002, 24(2):94-95 doi: 10.3969/j.issn.1004-1184.2002.02.016 |
[38] | JOHNSON G V, RAUN W R. Nitrate leaching in continuous winter wheat:Use of a soil-plant buffering concept to account for fertilizer nitrogen[J]. Journal of Production Agriculture, 1995, 8(4):486-491 doi: 10.2134/jpa1995.0486 |
[39] | GUO S L, ZHU H H, DANG T H, et al. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China[J]. Geoderma, 2012, 189/190:442-450 doi: 10.1016/j.geoderma.2012.06.012 |
[40] | LI X X, HU C S, DELGADO J A, et al. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain[J]. Agricultural Water Management, 2007, 89(1/2):137-147 http://www.ingentaconnect.com/content/el/03783774/2007/00000089/00000001/art00016 |
[41] | DONG Q, DANG T H, GUO S L, et al. Effect of different mulching measures on nitrate nitrogen leaching in spring maize planting system in south of Loess Plateau[J]. Agricultural Water Management, 2019, 213:654-658 doi: 10.1016/j.agwat.2018.09.044 |
[42] | 郑利芳, 吴三鼎, 党廷辉.不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响[J].水土保持学报, 2019, 33(4):221-227 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201904031.htm ZHENG L F, WU S D, DANG T H. Effects of different fertilization modes on spring maize yield, water use efficiency and nitrate nitrogen residue[J]. Journal of Soil and Water Conservation, 2019, 33(4):221-227 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201904031.htm |
[43] | KHAN A, LU G Y, AYAZ M, et al. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems[J]. Agriculture, Ecosystems & Environment, 2018, 256:1-11 http://www.sciencedirect.com/science/article/pii/S0167880918300069 |
[44] | HECKRATH G, BROOKES P C, POULTON P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J]. Journal Environment Quality, 1995, 24(5):904-910 doi: 10.2134/jeq1995.00472425002400050018x |
[45] | XIE Z J, LI S Y, TANG S C, et al. Phosphorus leaching from soil profiles in agricultural and forest lands measured by a cascade extraction method[J]. Journal of Environmental Quality, 2019, 48(3):568-578 doi: 10.2134/jeq2018.07.0285 |
[46] | CASSON J P, BENNETT D R, NOLAN S C, et al. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta[J]. Journal of Environmental Quality, 2006, 35(6):2212-2221 doi: 10.2134/jeq2006.0085 |
[47] | KLEINMAN P J A, CHURCH C, SAPORITO L S, et al. Phosphorus leaching from agricultural soils of the Delmarva Peninsula, USA[J]. Journal of Environmental Quality, 2015, 44(2):524-534 doi: 10.2134/jeq2014.07.0301 |
[48] | SHARPLEY A, JARVIE H P, BUDA A, et al. Phosphorus legacy:Overcoming the effects of past management practices to mitigate future water quality impairment[J]. Journal of Environmental Quality, 2013, 42(5):1308-1326 doi: 10.2134/jeq2013.03.0098 |
[49] | HAMILTON S K. Biogeochemical time lags may delay responses of streams to ecological restoration[J]. Freshwater Biology, 2012, 57(S1):43-57 http://bioscience.oxfordjournals.org/external-ref?access_num=10.1111/j.1365-2427.2011.02685.x&link_type=DOI |
[50] | 孙兆军.陕西水果面积和产量均居全国第一[J].中国果业信息, 2011, 28(11):45-46 https://www.cnki.com.cn/Article/CJFDTOTAL-GJYR201111032.htm SUN Z J. Shaanxi Province fruits ranked first both in area and yield in China[J]. China Fruit News, 2011, 28(11):45-46 https://www.cnki.com.cn/Article/CJFDTOTAL-GJYR201111032.htm |
[51] | 曹胜伟, 费宇红, 田夏, 等.硝酸盐污染氮氧同位素溯源及贡献率分析——以南阳地区为例[J].水文地质工程地质, 2019, 46(2):82-91 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201902012.htm CAO S W, FEI Y H, TIAN X, et al. Using isotopes of nitrogen and oxygen to trace groundwater nitrate contamination and contribution analysis:Exemplified by the Nanyang District[J]. Hydrogeology and Engineering Geology, 2019, 46(2):82-91 https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201902012.htm |
[52] | 傅雪梅, 孙源媛, 苏婧, 等.基于水化学和氮氧双同位素的地下水硝酸盐源解析[J].中国环境科学, 2019, 39(9):3951-3958 doi: 10.3969/j.issn.1000-6923.2019.09.042 FU X M, SUN Y Y, SU J, et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J]. China Environmental Science, 2019, 39(9):3951-3958 doi: 10.3969/j.issn.1000-6923.2019.09.042 |
[53] | 姜桂花, 王文科, 乔小英, 等, 关中盆地地下水特殊脆弱性及其评价[J].吉林大学学报:地球科学版, 2009, 39(6):1106-1110 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906024.htm JIANG G H, WANG W K, QIAO X Y, et al. Groundwater special vulnerability and its assessment in Guanzhong Basin[J]. Journal of Jilin University:Earth Science Edition, 2009, 39(6):1106-1110 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906024.htm |