删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

马铃薯||玉米间作对土壤细菌多样性的影响

本站小编 Free考研考试/2022-01-01

伏云珍1, 2,,
马琨1, 2, 3,,,
李倩3,
李光文3,
崔慧珍3
1.宁夏大学西北土地退化与生态恢复国家重点实验室培育基地 银川 750021
2.宁夏大学西北退化生态系统恢复与重建教育部重点实验室 银川 750021
3.宁夏大学农学院 银川 750021
基金项目: 国家自然科学基金项目31660132
宁夏回族自治区重点研发计划项目2018BBF03002
宁夏回族自治区重点研发计划项目2019BBF03011

详细信息
作者简介:伏云珍, 主要从事农业生态学研究。E-mail:2398525469@qq.com
通讯作者:马琨, 主要从事农田生态学和土壤微生物生态学研究。E-mail:makun0411@nxu.edu.cn
中图分类号:S154.37

计量

文章访问数:268
HTML全文浏览量:16
PDF下载量:145
被引次数:0
出版历程

收稿日期:2020-03-31
录用日期:2020-06-03
刊出日期:2020-11-01

Effects of potato intercropped with maize on soil bacterial diversity

FU Yunzhen1, 2,,
MA Kun1, 2, 3,,,
LI Qian3,
LI Guangwen3,
CUI Huizhen3
1. National Key Laboratory Breeding Base of Northwest Land Degradation and Ecological Restoration, Ningxia University, Yinchuan 750021, China
2. Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China
3. College of Agriculture, Ningxia University, Yinchuan 750021, China
Funds: the National Natural Science Foundation of China31660132
the Key Research and Development Plan of Ningxia Hui Autonomous Region2018BBF03002
the Key Research and Development Plan of Ningxia Hui Autonomous Region2019BBF03011

More Information
Corresponding author:MA Kun, E-mail:makun0411@nxu.edu.cn


摘要
HTML全文
(4)(3)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探明连续马铃薯、玉米单作及间作种植对土壤细菌群落组成的影响,利用IonS5TMXL高通量测序平台,分析了单作玉米(M)、单作马铃薯(P)、马铃薯||玉米间作(PM)下,土壤细菌群落组成以及多样性间的差异。结果表明:与单作相比,马铃薯||玉米间作土壤有机质含量显著升高(P < 0.05),但土壤全氮、碱解氮、全磷、速效钾、土壤pH等没有显著变化。所获得的56 787个土壤细菌可操作分类单元(OTUs)共分为46门、55纲、114目、208科、455属。土壤变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和放线菌门(Actinobacteria)细菌占总相对丰度的57.68%~65.11%,为优势菌门;间作对土壤细菌群落多样性(香农指数、辛普森指数)、丰富度(ACE指数和Chao1指数)无显著影响,但改变了基于门、属水平上的细菌群落组成。与单作马铃薯相比,间作显著降低了土壤变形菌门(Proteobacteria)相对丰度(P=0.023),提高了浮霉菌门(Planctomycetes)的相对丰度(P=0.043)。在属水平上,相对丰度较低的芽单胞菌属(Gemmatimonas)、Candidatus Solibacter属更易受到种植方式的影响;间作提高了节杆菌属(Arthrobacter)、芽球菌属(Blastococcus)和芽孢杆菌属(Bacillus)的相对丰度。随细菌群落结构变化,细菌群落功能上出现差异,通过KEGG功能预测共得到7个一级功能层,35个二级功能层,表现出功能上的丰富性,土壤细菌群落在代谢、遗传信息处理和细胞过程方面功能活跃。7个一级功能层中的代谢功能组在马铃薯||玉米间作与马铃薯单作间有显著差异。利用前向选择,经蒙特卡罗检验表明,连续马铃薯、玉米单作及间作栽培5年后的土壤各理化性状指标与土壤细菌群落组成、多样性间的相关性均不显著。连续马铃薯||玉米间作及单作5年条件下土壤细菌群落组成的变化是由马铃薯||玉米间作作物种间互利和竞争关系而驱动的。
关键词:马铃薯||玉米间作/
细菌群落/
多样性/
功能预测/
高通量测序/
种间关系
Abstract:One of the reasons for the replanting problem in continuous potato cropping is the change in the soil microbial community structure. Many studies have shown that reasonable intercropping can alleviate replant disease, and the relationships of crop-soil-microorganisms are a hot topic in current agricultural ecosystem research. Therefore, the objective of this study was to examine the difference in the soil bacterial community composition after continuous potato and maize monoculture and intercropping. The IonS5TMXL high-throughput sequencing platform was used to analyze the soil bacterial community composition and diversity under maize monoculture (M), potato monoculture (P), and potato intercropped with maize (PM). The results revealed that soil organic matter significantly increased in the treatment of potato intercropped with maize (P < 0.05), when compared with the monocultures. However, there were no significant changes in the soil total nitrogen, available nitrogen, total phosphorus, available potassium, and pH among different treatments. Moreover, the total 56 787 Operational Taxonomic Units (OTUs) of bacteria were classified as 46 phyla, 55 classes, 114 orders, 208 families, and 455 genera. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla and accounted for 57.68%-65.11% of the total relative abundance of bacteria. The diversity index (Shannon-Wiener and Simpson) and the richness index (ACE and Chao1) of soil bacterial communities did not change; however, the relative abundance of the soil bacterial communities changed at the phylum and genus levels. Compared to the potato monoculture, the relative abundance of Proteobacteria decreased significantly after potato was intercropped with maize (P=0.023), while the relative abundance of Planctomycetes increased (P=0.043). Furthermore, Gemmatimonas and Candidatus Solibacter, with lower relative abundance, were found to be more easily influenced by the planting patterns. Moreover, intercropping increased the relative abundance of Arthrobacter, Blastococcus, and Bacillus. With the change in the bacterial community, the soil bacterial functions were separately classified into 7 and 35 functional categories at hierarchy level 1 and 2, respectively, using the KEGG function prediction, which implied abundant soil bacteria functions. From this, we garnered that soil bacteria were active in metabolic processes, genetic information processing, and cellular processes. Furthermore, the metabolic functional groups in the 7 primary functional layers had significant differences between potato intercropped with maize and potato monoculture (P=0.046). Additionally, forward selection of the soil environmental factors was used, and the result of the Monte Carlo test showed that there was no significant correlation between soil physicochemical and biological properties and the soil bacterial community composition and diversity after the five-year experiment. In conclusion, the relationship between the interspecific mutualism and competition in potato intercropped with maize was the driving factor of the change in the soil bacterial community.
Key words:Potato intercropped with maize/
Bacterial community/
Diversity/
Function prediction/
High-throughput sequencing/
Interspecific relationship

HTML全文


图1马铃薯||玉米间作对土壤细菌相对丰度的影响(a:门水平; b:属水平)
M:单作玉米; P:单作马铃薯; PM:马铃薯||玉米间作。
Figure1.Relative abundance of soil bacterial at the phylum (a) and genus (b) levels under potato||maize intercropping
M: maize monoculture; P: potato monoculture; PM: potato||maize intercropping.


下载: 全尺寸图片幻灯片


图2基于门水平的马铃薯、玉米单作及间作下土壤细菌群落结构的NMDS分析
M:单作玉米; P:单作马铃薯; PM:马铃薯||玉米间作。
Figure2.Results of Non-metric Multidimensional Scaling (NMDS) based on the relative abundance of bacterial phyla under potato and maize monoculture and intercropping
M: maize monoculture; P: potato monoculture; PM: potato||maize intercropping.


下载: 全尺寸图片幻灯片


图3马铃薯||玉米间作下预测的细菌功能分组一级(a)、二级(b)功能层热图
M:单作玉米; P:单作马铃薯; PM:马铃薯||玉米间作。
Figure3.Heat map illustrating the clustering of functional profiles predicted under potato and maize monoculture and intercropping (a: hierarehy level 1; b: hierarehy level 2)
M: maize monoculture; P: potato monoculture; PM: potato||maize intercropping.


下载: 全尺寸图片幻灯片


图4马铃薯||玉米间作下基于门水平上土壤细菌的相对丰度(a)和多样性及丰富度(b)与土壤环境因子间的RDA分析
M:单作玉米; P:单作马铃薯; PM:马铃薯||玉米间作。OM:有机质; TP:全磷; AP:速效磷; TN:全氮; AN:碱解氮; AK:速效钾; RI:呼吸强度; SMBC:微生物生物量碳; C/N:碳氮比; Pro:变形菌门; Aci:酸杆菌门; Act:放线菌门; Bac:拟杆菌门; Gem:芽单胞菌门; Chl:绿弯菌门; Tha:奇古菌门; Nit:硝化螺旋菌门; Ver:疣微菌门; Fir:厚壁菌门。
Figure4.Redundancy analysis of relative abundance of soil bacteria at phylum level (a), bacterial diversity and richness (b) with soil physical, chemical characteristics under potato and maize monoculture and intercropping
M: maize monoculture; P: potato monoculture; PM: potato||maize intercropping.OM: organic matter; TP: total phosphorus; AP: available phosphorus; TN: total nitrogen; AN: available nitrogen; AK: available potassium; RI: respiration intensity; SMBC: soil microbial biomass carbon; C/N: carbon to nitrogen ratio; Pro: Proteobacteria; Aci: Acidobacteria; Act: Actinobacteria; Bac: Bacteroidetes; Gem: Gemmatimonadetes; Chl: Chloroflexi; Tha: Thaumarchaeota; Nit: Nitrospirae; Ver: Verrucomicrobia; Fir: Firmicutes.


下载: 全尺寸图片幻灯片

表1连续马铃薯||玉米间作对作物产量及土地当量比的影响(201—2018年)
Table1.Yield, land equivalent ratio and interspecific competitiveness of potato||maize intercropping system from 2014 to 2018
年份
Year
产量
Yield (kg·hm-2)
土地当量比
Land equivalent ratio
玉米相对于马铃薯的竞争力
Interspecific competitiveness of maize versus potato
单作玉米
Maize monoculture
单作马铃薯
Potato monoculture
间作玉米
Intercropped maize
间作马铃薯
Intercropped potato
2014 7 493.85±567.75 17 863.05±883.80 12 112.65±435.45 14 607.30±633.30 1.22 0.80
2015 9 545.85±622.80 31 891.80±906.00 10 294.95±536.55 29 605.35±735.30 1.00 0.17
2016 8 802.30±1 303.35 28 137.00±5 402.25 9 895.50±491.25 27 312.30±2 177.25 1.05 0.15
2017 8 297.40±1 519.20 22 175.40±2 875.35 6 588.15±1 929.75 21 916.65±1 550.70 0.91 -0.16
2018 11 395.50±953.10 19 654.05±1 482.15 13 002.90±922.20 24 026.25±7 019.55 1.19 -0.08
平均Average 9 046.98 24 052.26 10 378.83 23 493.57 / /


下载: 导出CSV
表2马铃薯和玉米单作及间作5年后土壤基础理化及生物学性状
Table2.Soil basic physicochemical and biological properties of monoculture of potato and maize and their intercropping for 5 years
性状
Property
试验前
Before experiment
单作玉米
Maize monoculture
单作马铃薯
Potato monoculture
马铃薯||玉米间作
Potato||maize intercropping
全氮
Total N (g·kg-1)
1.65±0.02a 0.83±0.04b 0.80±0.05b 0.82±0.03b
全磷
Total P (g·kg-1)
1.35±0.05a 0.92±0.56b 0.87±0.44b 1.03±0.37b
碱解氮
Available N (mg·kg-1)
70.00±0.00a 47.52±1.92b 46.27±2.76b 47.46±4.00b
速效磷
Available P (mg·kg-1)
49.24±0.16a 25.75±5.05c 30.45±5.14b 30.00±5.08bc
速效钾
Available K (mg·kg-1)
380.00±0.00a 180.34±13.86b 191.25±17.64b 179.20±10.71b
有机质
Organic matter (g·kg-1)
33.28±0.10a 18.33±0.44c 18.36±0.56c 19.21±0.86b
pH 8.37±0.03a 8.30±0.03a 8.27±0.05a 8.30±0.02a
碳氮比
C/N
12.78±0.76a 13.31±0.87a 13.54±0.81a
呼吸强度
Respiration intensity (mL·kg-1)
39.66±4.75a 39.53±4.29a 41.91±5.11a
微生物量碳
Microbial biomass C (mg·kg-1)
472.04±67.75a 323.16±118.61a 413.89±107.43a
??表中数据为平均值±标准差, 同行不同小写字母表示差异显著(P < 0.05)。Data are means ± standard deviation. Different lowercase letters in the same row mean significant differences (P < 0.05).


下载: 导出CSV
表3马铃薯、玉米单作及间作栽培对土壤细菌群落Alpha多样性的影响
Table3.Effects of potato and maize monoculture and intercropping on soil bacterial community alpha diversity
指标
Index
单作玉米
Maize monoculture
单作马铃薯
Potato monoculture
马铃薯||玉米间作
Potato||maize intercropping
覆盖度
Goods coverage (%)
98.76±0.25a 98.60±0.31a 98.75±0.26a
香农指数
Shannon index
9.25±0.16a 9.23±0.11a 9.24±0.16a
辛普森指数
Simpson index
0.996±0.001a 0.995±0.001a 0.995±0.001a
Chao1指数
Chao1 index
2 466.58±230.46a 2 719.55±662.51a 2 494.75±283.87a
ACE指数
ACE index
2 477.44±204.48a 2 599.71±203.33a 2 513.57±233.16a
物种数
Observed species
2 194.25±122.72a 2 264.75±94.74a 2 233.75±136.88a
??表中数据为平均值±标准差, 同行不同小写字母表示差异显著(P < 0.05)。Data are means ± standard deviation. Different lowercase letters in the same row mean significant differences (P < 0.05).


下载: 导出CSV

参考文献(37)
[1]沈宝云, 刘星, 王蒂, 等.甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响[J].中国生态农业学报, 2013, 21(6):689-699 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013607&flag=1
SHEN B Y, LIU X, WANG D, et al. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6):689-699 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2013607&flag=1
[2]刘星, 张书乐, 刘国锋, 等.连作对甘肃中部沿黄灌区马铃薯干物质积累和分配的影响[J].作物学报, 2014, 40(7):1274-1285 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201407015
LIU X, ZHANG S L, LIU G F, et al. Effects of continuous cropping on dry matter accumulation and distribution of potato plants in the Yellow River irrigation areas of Middle Gansu Province[J]. Acta Agronomica Sinica, 2014, 40(7):1274-1285 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201407015
[3]BRACKEN M E S. Monocultures versus polycultures[M]//JORGENSEN S E. Encyclopedia of Ecology. Amsterdam: Elsevier Press, 2008: 2446-2449
[4]王娜, 陆姗姗, 马琨, 等.宁夏南部山区马铃薯不同间作模式对根际土壤细菌多样性的影响[J].干旱区资源与环境, 2016, 30(12):193-198 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201612031
WANG N, LU S S, MA K, et al. The genetic diversity of rhizosphere soil bacteria under different intercropping patterns for potato in southern mountainous area of Ningxia[J]. Journal of Arid Land Resources and Environment, 2016, 30(12):193-198 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqzyyhj201612031
[5]汪春明, 马琨, 代晓华, 等.间作栽培对连作马铃薯根际土壤微生物区系的影响[J].生态与农村环境学报, 2013, 29(6):711-716 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201306006
WANG C M, MA K, DAI X H, et al. Effect of intercropping on soil microflora in rhizosphere soil of potato under continuous cropping[J]. Journal of Ecology and Rural Environment, 2013, 29(6):711-716 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncsthj201306006
[6]WU K X, FULLEN M A, AN T X, et al. Above-and below-ground interspecific interaction in intercropped maize and potato:A field study using the 'target' technique[J]. Field Crops Research, 2012, 139:63-70 doi: 10.1016/j.fcr.2012.10.002
[7]YANG Y, DOU Y X, AN S S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau[J]. Science of the Total Environment, 2018, 626:48-58 doi: 10.1016/j.scitotenv.2018.01.081
[8]LI Q S, WU L K, CHEN J, et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping[J]. Journal of Integrative Agriculture, 2016, 15(1):101-110 doi: 10.1016/S2095-3119(15)61089-9
[9]秦立金, 徐峰, 刘永胜, 等.黄瓜与西芹间作土壤细菌多样性及其对黄瓜枯萎病发生的影响[J].中国生态农业学报, 2018, 26(8):1180-1189 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0810&flag=1
QIN L J, XU F, LIU Y S, et al. Analysis of soil bacterial diversity under cucumber-celery intercropping and its influence on cucumber Fusarium wilt[J]. Chinese Journal of Eco-Agriculture, 2018, 26(8):1180-1189 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0810&flag=1
[10]DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems:Complementarity and facilitation processes and the importance of soil microorganisms. A review[J]. Agriculture, Ecosystems & Environment, 2017, 240:148-161 http://www.sciencedirect.com/science/article/pii/S0167880917300828
[11]ZHOU L J, WANG Y J, XIE Z K, et al. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor[J]. Journal of Basic Microbiology, 2018, 58(10):892-901 doi: 10.1002/jobm.201800163
[12]马琨, 杨桂丽, 马玲, 等.间作栽培对连作马铃薯根际土壤微生物群落的影响[J].生态学报, 2016, 36(10):2987-2995 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201610023
MA K, YANG G L, MA L, et al. Effects of intercropping on soil microbial communities after long-term potato monoculture[J]. Acta Ecologica Sinica, 2016, 36(10):2987-2995 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201610023
[13]MARSCHNER P, YANG C H, LIEBEREI R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001, 33(11):1437-1445 doi: 10.1016/S0038-0717(01)00052-9
[14]BAUDOIN E, BENIZRI E, GUCKERT A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere[J]. Soil Biology and Biochemistry, 2003, 35(9):1183-1192 doi: 10.1016/S0038-0717(03)00179-2
[15]ZHANG M M, WANG N, HU Y B, et al. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system[J]. Microbiologyopen, 2018, 7(2):e00555 doi: 10.1002/mbo3.555
[16]LIU W X, WANG Q L, WANG B Z, et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system[J]. Plant and Soil, 2015, 395(1):415-427 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca4483e71081825f2187312a6e580cb1
[17]ATKINSON D, THORNTON M K, MILLER J S. Development of Rhizoctonia solani on stems, stolons and tubers of potatoes Ⅰ. effect of inoculum source[J]. American Journal of Potato Research, 2010, 87(4):374-381 doi: 10.1007/s12230-010-9143-6
[18]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000:1-329
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd edition. Beijing:China Agriculture Press, 2000:1-329
[19]MAGO? T, SALZBERG S L. FLASH:Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963 doi: 10.1093/bioinformatics/btr507
[20]HASS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011, 21(3):494-504 doi: 10.1101/gr.112730.110
[21]EDGAR R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998 doi: 10.1038/nmeth.2604
[22]WHITE J R, NAGARAJAN N, POP M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J]. PLoS Computational Biology, 2009, 5(4):e1000352 doi: 10.1371/journal.pcbi.1000352
[23]李倩.马铃薯玉米间作的种间作用效应研究[D].银川: 宁夏大学, 2019
LI Q. Study on the interspecific effect of potato intercropping with maize[D]. Yinchuan: Ningxia University, 2019
[24]SPEHN E M, JOSHI J, SCHMID B, et al. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems[J]. Plant and Soil, 2000, 224(2):217-230 doi: 10.1023/A:1004891807664
[25]付学鹏, 吴凤芝, 吴瑕, 等.间套作改善作物矿质营养的机理研究进展[J].植物营养与肥料学报, 2016, 22(2):525-535 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201602028
FU X P, WU F Z, WU X, et al. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems[J]. Plant Nutrition and Fertilizer Science, 2016, 22(2):525-535 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyyyflxb201602028
[26]FU Z D, ZHOU L, CHEN P, et al. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community[J]. Journal of Integrative Agriculture, 2019, 18(9):2006-2018 doi: 10.1016/S2095-3119(18)62114-8
[27]ZHANG N N, SUN Y M, LI L, et al. Effects of intercropping and Rhizobium inoculation on yield and rhizosphere bacterial community of faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils, 2010, 46(6):625-639 doi: 10.1007/s00374-010-0469-5
[28]雍太文, 杨文钰, 向达兵, 等.小麦/玉米/大豆和小麦/玉米/甘薯套作对根际土壤细菌群落多样性及植株氮素吸收的影响[J].作物学报, 2012, 38(2):333-343 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201202018
YONG T W, YANG W Y, XIANG D B, et al. Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizosphere soil and nitrogen uptake of crops[J]. Acta Agronomica Sinica, 2012, 38(2):333-343 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201202018
[29]LI X, SUN M L, ZHANG H H, et al. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community[J]. Microbial Biotechnology, 2016, 9(3):293-304 doi: 10.1111/1751-7915.12342
[30]TKACZ A, CHEEMA J, CHANDRA G, et al. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition[J]. The ISME Journal, 2015, 9(11):2349-2359 doi: 10.1038/ismej.2015.41
[31]LI Q S, CHEN J, WU L K, et al. Belowground Interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2):622-634 doi: 10.3390/ijms19020622
[32]丁传雨, 郑远, 任学敏, 等.能源植物修复土壤镉污染过程中细菌群落分析[J].环境科学学报, 2016, 36(8):3009-3016 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201608037
DING C Y, ZHENG Y, REN X M, et al. Changes in bacterial community composition during the remediation of Cd-contaminated soils of bioenergy crops[J]. Acta Scientiae Circumstantiae, 2016, 36(8):3009-3016 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201608037
[33]杜思瑶, 于淼, 刘芳华, 等.设施种植模式对土壤细菌多样性及群落结构的影响[J].中国生态农业学报, 2017, 25(11):1615-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171105&flag=1
DU S Y, YU M, LIU F H, et al. Effect of facility management regimes on soil bacterial diversity and community structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11):1615-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171105&flag=1
[34]覃潇敏, 郑毅, 汤利, 等.玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J].作物学报, 2015, 41(6):919-928 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201506010
QIN X M, ZHENG Y, TANG L, et al. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity[J]. Acta Agronomica Sinica, 2015, 41(6):919-928 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201506010
[35]赵天心, 毛新伟, 程敏, 等.毛竹种植对土壤细菌和真菌群落结构及多样性的影响[J].应用生态学报, 2017, 28(11):3740-3750 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201711033
ZHAO T X, MAO X W, CHENG M, et al. Effects of phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity[J]. Chinese Journal of Applied Ecology, 2017, 28(11):3740-3750 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201711033
[36]PRESTON-MAFHAM J, BODDY L, RANDERSON P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles — a critique[J]. FEMS Microbiology Ecology, 2002, 42(1):1-14 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=373b295f91961e1c47460c6d09f11976
[37]林耀奔, 叶艳妹, 刘书畅, 等.不同农地整治措施对土壤细菌多样性的影响[J].长江流域资源与环境, 2019, 28(11):2632-2640 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjlyzyyhj201911009
LIN Y B, YE Y M, LIU S C, et al. Analysis of soil microbial diversity affected by different agricultural land consolidation practices[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11):2632-2640 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjlyzyyhj201911009

相关话题/土壤 微生物 结构 生态 环境