删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同水分环境下玉米叶形相关性状与SSR标记的关联分析

本站小编 Free考研考试/2022-01-01

钟源,
赵小强,,
李文丽
甘肃农业大学甘肃省干旱生境作物学重点实验室 兰州 730070
基金项目: 甘肃农业大学甘肃省干旱生境作物学重点实验室开放基金GSCS-2019-8
甘肃农业大学甘肃省干旱生境作物学重点实验室开放基金GSCS-2020-5
甘肃农业大学科技创新基金-公招博士科研启动基金GAU-KYQD-2018-19
甘肃农业大学科技创新基金-公招博士科研启动基金GAU-KYQD-2018-12
甘肃省高等学校创新能力提升项目2019A-052
甘肃省高等学校创新能力提升项目2019A-054
国家自然科学基金项目32060486
兰州青绿仪器技术有限公司横向项目WT20191025

详细信息
作者简介:钟源, 主要从事生物化学与分子生物学研究。E-mail:zhongy@gsau.edu.cn
通讯作者:赵小强, 主要研究方向为现代生物技术及其在作物遗传育种中的应用。E-mail:zhaoxq3324@163.com
中图分类号:S513.035.2

计量

文章访问数:141
HTML全文浏览量:4
PDF下载量:109
被引次数:0
出版历程

收稿日期:2020-06-27
录用日期:2020-08-19
刊出日期:2020-11-01

Association analysis of SSR markers with leaf morphology in maize (Zea mays) under diverse watering regimes

ZHONG Yuan,
ZHAO Xiaoqiang,,
LI Wenli
Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
Funds: the Open Fund of Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University,ChinaGSCS-2019-8
the Open Fund of Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University,ChinaGSCS-2020-5
the Scientific Research Start-up Funds for Openly-recruited Doctors of Science and Technology Innovation Funds of Gansu Agricultural University, ChinaGAU-KYQD-2018-19
the Scientific Research Start-up Funds for Openly-recruited Doctors of Science and Technology Innovation Funds of Gansu Agricultural University, ChinaGAU-KYQD-2018-12
the Developmental Funds of Innovation Capacity in Higher Education of Gansu Province, China2019A-052
the Developmental Funds of Innovation Capacity in Higher Education of Gansu Province, China2019A-054
National Natural Science Foundation of China32060486
the Transverse Project of Lanzhou Qingli Instrument and Technology Company, ChinaWT20191025

More Information
Corresponding author:ZHAO Xiaoqiang, E-mail:zhaoxq3324@163.com


摘要
HTML全文
(2)(6)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:玉米的叶形结构与其抗旱性紧密相关,挖掘不同水分环境下调控玉米叶形相关性状的显著关联分子标记位点,可为揭示玉米叶形结构的分子遗传机理、克隆相关调控基因并进行抗旱理想株型育种提供参考。本研究在不同水分环境下分析187份玉米自交系叶长、叶宽、叶夹角、叶向值、叶面积、叶形系数及叶片卷曲度等7个叶形相关性状的变化,采用SSR标记对这些材料进行全基因组扫描并分析其遗传多样性,采用一般线性模型(GLM)寻找不同水分环境下与玉米7个叶形相关性状关联的分子标记。结果表明:1)干旱环境下187份玉米自交系的叶长、叶宽、叶夹角、叶面积均显著降低,而叶向值、叶形系数及叶片卷曲度均明显升高,且干旱环境下这7个叶形相关性状的变异比率为30.53%~198.31%。2)145对SSR标记共检测出652个等位变异,变异范围在2~13个;多态性信息量(PIC)变异范围为0.201~0.966,平均0.478。采用UPGMA聚类及群体遗传结构分析均将供试材料分为旅大红骨(LRC)、唐四平头(TSPT)、兰卡斯特(Lan)、P及瑞德(Reid)等5大类群。3)采用GLM模型,在不同水分环境下共检测到15个SSR标记与玉米的7个叶形相关性状在P < 0.01水平下关联,各标记对表型的解释率为2.25%~27.30%,72.97%的标记可在干旱环境下被检测到;其中umc1124、umc2363、umc2214、umc1742、phi331888、umc1378、bnlg1863、umc2134和umc1345标记同时与不同水分环境下的多个叶形相关性状连锁,表现出明显的“一因多效”现象。这些研究结果将为玉米叶形结构的遗传改良及抗旱理想株型分子标记辅助选择育种提供参考。
关键词:玉米/
叶形结构/
干旱/
遗传结构/
关联分析
Abstract:The leaf morphology of maize (Zea mays) is closely related to its drought resistance. The molecular markers correlated with leaf morphology traits under different watering regimes may provide insights into the genetic mechanisms and identify the breeding varieties. In this study, changes in the leaf length (LL), leaf width (LW), leaf angle (LA), leaf orientation value (LOV), leaf size (LS), leaf shape coefficient (LSC), and leaf rolling index (LRI) of 187 maize inbred lines were analyzed under different watering regimes. A genome-wide scan and the genetic diversity were analyzed with simple-sequence repeat (SSR) markers, and the associations between the markers and the leaf morphological traits were assessed via a general linear model (GLM). The results showed that:1) the coefficients of variation for the leaf morphological traits of the 187 inbred lines were 13.21%-59.23% and 9.62%-28.22% under normal water and dry conditions, respectively, indicating abundant genetic variation. There were significant differences in the seven leaf morphological traits, so the leaf morphology was adjusted by the hereditary character of the inbred line. LL, LW, LA, and LS decreased significantly under drought stress, whereas LOV, LSC, and LRI increased, and the variance rate of the seven traits was 30.53%-198.31%. 2) A total of 652 alleles were detected using 145 SSR markers. The polymorphism information content (PIC) ranged from 0.201 to 0.966, with an average of 0.478. The tested materials were divided into five groups based on unweighted pair group method with arithmetic mean clustering and population structure; the Luda red cob group, Tangsipingtou group, Lancaster group, P group, and Reid group. 3) A total of 15 SSR markers were associated with seven leaf morphologies under different watering regimes (GLM, P < 0.01), and the amount of explained phenotypic variance was 2.25%-27.30%. Approximately 72.97% of the SSR markers were detected under drought conditions. The umc1124, umc2363, umc1742, phi331888, umc1378, bnlg1863, umc2134, and umc1345 markers were simultaneously associated with multiple leaf morphologies under different watering regimes, indicating pleiotropy. These results provide useful information for the genetic improvement of leaf morphology and marker-assisted selection breeding programs for maize drought resistance and optimization.
Key words:Maize/
Leaf morphology/
Drought/
Genetic structure/
Association analysis

HTML全文


图1187份玉米自交系的群体遗传结构分析的 ΔK值随K值变化曲线
K: 群体个数 The number of population.
Figure1.Change curve in the log probability of data of ΔK value with K value of 187 maize inbred lines


下载: 全尺寸图片幻灯片


图2基于SSR标记的187份玉米自交系群体遗传结构
LRC:旅大红骨类群; TSPT:唐四平头类群; Lan:兰卡斯特类群; P: P群; Reid:瑞德类群; 不同颜色代表不同类群, 颜色多少表示该类群的概率。
Figure2.Population genetic structure of 187 maize inbred lines based on SSR
LRC: luda red cob group; TSPT: tangsipingtou group; Lan: lancaster group; P: P group; Reid: Reid group; Different colors indicate the corresponding groups, areas of colors indicate probability of the corresponding groups.


下载: 全尺寸图片幻灯片

表1不同水分环境下187份玉米自交系叶形相关性状的表型值
Table1.Phenotypic values of leaf morphology traits of 187 maize inbred lines under different water environments
项目
Item
LL (cm) LW (cm) LA (°) LOV LS (cm2) LSC LRI
CK DS CK DS CK DS CK DS CK DS CK DS CK DS
均值
Mean
76.47±13.99 71.46±8.64 10.02±1.32 9.30±1.44 24.63±7.67 22.82±6.44 58.62±10.93 61.16±9.90 566.64±109.62 521.45±110.16 7.32±1.20 7.77±2.03 3.37±1.99 4.45±1.69
最大值
Max
119.80 89.90 14.53 14.23 53.92 45.62 80.17 86.08 929.33 872.09 11.82 18.58 16.16 9.35
最小值
Min
50.25 45.70 6.30 4.65 9.83 9.75 25.24 36.89 321.84 282.41 5.09 4.03 0.25 0.97
变异系数
Coefficient of variation (%)
18.29 9.62 13.21 10.10 14.23 28.22 13.64 16.18 19.35 12.63 16.45 10.95 59.23 18.08
变异比率
Variation rate (%)
52.60 76.46 198.31 118.62 65.27 66.57 30.53
偏度
Skewness
0.988 -0.272 0.244 0.637 0.752 0.465 -0.617 -0.305 0.789 0.656 0.512 0.777 0.957 0.558
峰度
Kurtosis
0.960 -0.396 0.297 1.196 1.079 0.148 0.199 -0.264 0.865 0.691 0.213 0.498 1.327 0.340
??LL:叶长; LW:叶宽; LA:叶夹角; LOV:叶向值; LS:叶面积; LSC:叶形系数; LRI:叶片卷曲度; CK:正常供水处理; DS:干旱胁迫处理。LL: leaf length; LW: leaf width; LA: leaf angle; LOV: leaf orientation value; LS: leaf size; LSC: leaf shape coefficient; LRI: leaf rolling index; CK: normal water treatment; DS: drought stress treatment.


下载: 导出CSV
表2不同水分环境下187份玉米自交系叶形相关性状的方差分析(F值)
Table2.Variance analysis of leaf morphology traits for 187 maize inbred lines under different water environments (F-value)
变异来源
Variance source
LL LW LA LOV LS LSC LRI
自交系
Inbred lines (IL)
139.614** 74.797** 2.151* 5.665** 75.249** 61.585** 2.174*
水分处理
Water treatment (WT)
19.724** 49.655** 3.636** 13.363** 85.186** 84.509** 4.797**
自交系×水分处理
IL×WT
42.516** 116.712** 3.265** 5.587** 70.788** 56.397** 2.115*
??*或**分别代表P < 0.05或P < 0.01水平差异显著。LL:叶长; LW:叶宽; LA:叶夹角; LOV:叶向值; LS:叶面积; LSC:叶形系数; LRI:叶片卷曲度。* or ** indicate significant difference at P < 0.05 or P < 0.01 levels, respectively. LL: leaf length; LW: leaf width; LA: leaf angle; LOV: leaf orientation value; LS: leaf size; LSC: leaf shape coefficient; LRI: leaf rolling index.


下载: 导出CSV
表3187份玉米自交系叶形相关性状的相关分析
Table3.Correlation analysis among leaf morphology traits of 187 maize inbred lines
性状 Trait LL LW LA LOV LS LSC LRI
LL 1.000
LW 0.218** 1.000
LA -0.119* -0.104* 1.000
LOV -0.117* -0.114* -0.695** 1.000
LS 0.639** 0.725** -0.155* -0.210** 1.000
LSC 0.258** -0.382** -0.121* -0.061 -0.179* 1.000
LRI -0.113* -0.233** -0.016 0.071 -0.169* 0.121* 1.000
??*或**分别代表P < 0.05或P < 0.01水平显著相关。LL:叶长; LW:叶宽; LA:叶夹角; LOV:叶向值; LS:叶面积; LSC:叶形系数; LRI:叶片卷曲度。* or ** indicate significant correlation at P < 0.05 or P < 0.01 levels, respectively. LL: leaf length; LW: leaf width; LA: leaf angle; LOV: leaf orientation value; LS: leaf size; LSC: leaf shape coefficient; LRI: leaf rolling index.


下载: 导出CSV
表4145对SSR标记在187份玉米自交系中检测到的等位基因数及多态性信息量(PIC)
Table4.Allele number and polymorphism information content value (PIC) for 145 SSRs found in 187 maize inbred lines
标记
Marker
Bin 等位基因数
No. of allele
PIC 重复序列
Repeat sequence
bnlg149 1.01 7 0.628
bnlg1484 1.03 3 0.256 AG(19)
umc1124 1.05 4 0.424 TCCC
umc2025 1.05 2 0.311
umc1278 1.07 6 0.966 (CT)12
mmc0041 1.08 9 0.922
phi011 1.09 2 0.231 AGC
phi064 1.11 6 0.575 ATCC
phi96100 2.01 6 0.840 ACCT
umc2363 2.02 4 0.511
umc1555 2.03 6 0.669 (TTCA)7
phi083 2.04 8 0.286 AGCT
bnlg1613 2.04 2 0.461 AG(27)
nc133 2.05 9 0.405 GTGTC
umc1890 2.07 5 0.559 (AT)8
bnlg1633 2.07 4 0.437 AG(16)
phi127 2.08 7 0.704 AGAC
bnlg1233 2.08 7 0.731 AG(24)
bnlg1940 2.08 6 0.524 AG(18)
umc2214 2.09 4 0.298 (GCAT)6
umc1736 2.09 3 0.312 (GCAT)6
umc1780 3.00 3 0.224 (CAC)4
umc1746 3.00 5 0.505 (CAC)4
umc2376 3.01 4 0.260 (ACACAC)4
phi374118 3.02 8 0.682 ACC
phi029 3.04 7 0.736 AG/AGCG***
umc1742 3.04 6 0.330 (CGC)4
phi053 3.05 6 0.237 ATAC
phi073 3.05 13 0.672 AGC
umc1539 3.05~3.06 4 0.394 (GGC)5
phi102228 3.06 12 0.586 AAGC
umc1404 3.07 2 0.260 (CCG)4
umc1399 3.07 8 0.569 (CTAG)5
phi046 3.08 8 0.651 ACGC
umc1320 3.08 4 0.460 (GAAC)4
phi047 3.09 5 0.357 ATC
bnlg1496 3.09 4 0.378 AG(18)
umc2176 4.00 3 0.315 (TGC)4
umc2206 4.00 4 0.681 (GTAC)4
umc2061 4.00 6 0.450 (CTG)8
phi072 4.00~4.01 5 0.540 AAAC
bnlg1126 4.03 2 0.531
umc1662 4.05 4 0.318 (AGCC)4
umc1031 4.05 5 0.383 (CT)6AT(CT)9
bnlg1621a 4.06 5 0.516 AG(18)
bnlg1927 4.07 6 0.629
umc2038 4.07 9 0.881 (GAC)4
bnlg2162 4.08 3 0.593 AG(27)
bnlg589 4.10 5 0.487
phi006 4.11 5 0.373 CCT
phi076 4.11 3 0.371 AGCGGG
nc130 5.00 6 0.201 AGC
umc2291 5.00 4 0.421 (CCT)5
phi024 5.01 4 0.670 CCT
umc2388 5.02~5.03 3 0.243
phi113 5.03~5.04 4 0.327 GTCT
phi109188 5.03 4 0.377 AAAG
phi331888 5.04 5 0.581 AAG
umc1155 5.05 7 0.576 (AG)20
phi087 5.06 3 0.215 ACC
umc2216 5.06 8 0.788 (TCTC)5
umc1072 5.07 7 0.273 (GGA)10
umc1225 5.08 4 0.225 (AG)6
bnlg1597c 5.08 6 0.775 (TCA)4
umc1153 5.09 3 0.244 (TCA)4
umc1143 6.00 5 0.471 AAAAT
umc2208 6.00 3 0.297 (AAG)5
umc2311 6.00 6 0.482
phi126 6.00 3 0.863 AG
phi423796 6.01 5 0.484 AGATG
umc1378 7.00 4 0.763 (CGC)6
umc1409 7.01 4 0.429 (GCTC)4
bnlg1200 7.02 4 0.410 AG(24)
umc1450 7.03 8 0.771 (AC)10
umc1708 7.04 3 0.235 (GGA)4
umc2042 8.01 7 0.733 (GCC)4
bnlg1073 8.01 4 0.410 AG(19)
umc1327 8.01 4 0.446 (GCC)4
bnlg1194 8.02 3 0.853 AG(33)
umc1974 8.02 4 0.542
bnlg2235 8.02 4 0.555 AG(23)
bnlg1352 8.02 4 0.405 AG(16)
umc1304 8.02 5 0.470 (TCGA)4
umc1360 8.02 4 0.490 (ACA)4
bnlg2289 8.02 4 0.335 AG(27)
umc1530 8.03 4 0.663 (GGC)5
bnlg1863 8.03 3 0.373 AG(15)
umc2075 8.03 2 0.280 (AGCCAG)4
bnlg162 8.05 2 0.269
bnlg666 8.05 5 0.529
bnlg1812 8.05 5 0.554 AG(22)
bnlg2181 8.05 2 0.246 AG(19)
umc2356 8.05 4 0.323 (TCT)5
umc2395 8.06 4 0.524 (CGA)4
umc1607 8.07 4 0.348 (TGC)5
bnlg1823 8.07 3 0.665 AG(18)
umc2218 8.08 4 0.539 (TC)6
umc1005 8.08 4 0.807 (GT)15
Umc1933 8.08 3 0.482
phi233376 8.09 4 0.372 CCG
umc1638 8.09 4 0.448 (CTCCGG)5
umc1916 8.09 3 0.348 (CT)8
umc2573 9.00 4 0.772 TA
bnlg1401 9.02 3 0.320
umc1033 9.02 4 0.656 GA)25
umc2337 9.03 3 0.247
umc1586 9.03 4 0.824 (ATC)5
bnlg1730 9.03 2 0.654 AG(26)
umc1258 9.03 4 0.451
bnlg469a 9.03 5 0.705
bnlg1209 9.04 3 0.215 AG(12)
umc1492 9.04 4 0.401 (GCT)4
umc1120 9.04 3 0.318 (GGCAT)5
umc1107 9.04 5 0.235
umc2134 9.05 3 0.335 (TTC)6
umc2346 9.06 4 0.440 (TA)7
dupssr29 9.07 3 0.570 (GA)24
umc2359 9.07 4 0.611 (AAAAG)4
bnlg1588 9.07 2 0.295 AG(21)
bnlg619 9.07 5 0.465
umc1104 9.07 4 0.376 GAT
umc1982 9.08 3 0.289
dupssr8 10.00 3 0.472 (TA)3 (CA)17
umc1319 10.01 4 0.464 (ACC)5
bnlg1451 10.01 4 0.733 AG(34)
umc1337 10.02 3 0.264 (TA)8
phi052 10.02 4 0.446 AAG
bnlg1655 10.03 4 0.572 AG(21)
umc1345 10.03 3 0.565 (GCC)4
umc2016 10.03 3 0.496 (ACAT)4
umc1246 10.04 4 0.328 (AAAT)5
umc1678 10.04 2 0.273 (TCG)6
bnlg1074 10.05 2 0.342 AG(14)
umc1506 10.05 6 0.784 (AACA)4
umc1402 10.05 6 0.867 (GCCC)4
umc2221 10.05~10.06 4 0.210 (GAGA)4
bnlg236 10.06 4 0.288
umc1249 10.06 2 0.335 (TG)6
umc1038 10.07 6 0.579 (CT)15
umc1645 10.07 5 0.585 (CT)10
bnlg1839 10.07 3 0.578 AG(24)
bnlg1450 10.07 6 0.388 AG(34)
bnlg1185 10.07 3 0.307 AG(24)
bnlg1677 10.07 5 0.516 AG(34)
bnlg1877 10.07 4 0.200
??***为不确定碱基; —为缺失。*** means uncertain base; — means missing.


下载: 导出CSV
表5187份玉米自交系UPGMA聚类分析
Table5.UPGMA clustering of 187 maize inbred lines
杂种优势类群
Heterotic group
自交系
Inbred lines
旅大红骨Luda red cob group 丹340、综31、117、0201、DM、137、综3、鲁原92、543、Va35-2、WN11、CW、9046、ZX-745半、锋1870半、ZX-957马、ZX-316马、ZX-382马、ZX-321马、ZX-128马、ZX-385马、ZX-964马、玉1768硬、ZX-25半、ZX-741半 Dan340, Zong31, 117, 0201, DM, 137, Zong3, Luyuan92, 543, Va35-2, WN11, CW, 9046, ZX-745ban, Feng1870ban, ZX-957ma, ZX-316ma, ZX-382ma, ZX-321ma, ZX-128ma, ZX-385ma, ZX-964ma, Yu1768ying, ZX-25ban, ZX-741ban
唐四平头Tangsipingtou group 黄早4、昌7-2、廊黄、430、黄201、马802A、502优、N192、323、W64A、H21、R802、兆111、W182BW、K805、吉853、吉H3、锦330、锋1973硬、LT-151-4N、LT-80-1N、锋1956半、LT-117-2N、LT-28-1N、LT-199-4N、CT-101-4、LT-100-3N、J-D17、W-D10、锋1913硬、ZX-236马、LT-55-1N、LT-121-6N、LT-202-3N Huangzao4, Chang7-2, Langhuang, 430, Huang201, Ma802A, 502You, N192, 323, W64A, H21, R802, Zhao111, W182BW, K805, Ji853, JiH3, Jin330, Feng1973ying, LT-151-4N, LT-80-1N, Feng1956ban, LT-117-2N, LT-28-1N, LT-199-4N, CT-101-4, LT-100-3N, J-D17, W-D10, Feng1913ying, ZX-236ma, LT-55-1N, LT-121-6N, LT-202-3N
兰卡斯特Lancaster group Mo17、314、廊H、TS109、ND246、AR234、Va26、黄C、自330、01743-2、Mo12、Pa91、A654、PL16、玉1824半、CT-54-1、LT-227-4N、玉1790半、ZX-622半、LT-134-3W、LT-197-2W、LT-204-10N、LT-121-4S、J-D101、J-D51、ZX-45半、PL208、J-D190 Mo17, 314, LangH, TS109, ND246, AR234, Va26, HuangC, Zi330, 01743-2, Mo12, Pa91, A654, PL16, Yu1824ban, CT-54-1, LT-227-4N, Yu1790ban, ZX-622ban, LT-134-3W, LT-197-2W, LT-204-10N, LT-121-4S, J-D101, J-D51, ZX-45ban, PL208, J-D190
P 齐319、N87-1、沈136、A413、K12、8802A、OH43-2、T58、78599-1、P138、12、H105W、599、231、TS164、X-178、598、锋1999马、LT-117-2S、LT-126-1D、玉1753硬、LT-215-1N、玉1823半、玉1769硬、ZX-622半、W-D98、J-D32、J-D53、Q6122-4-2-3、PL207、ZX-965马、玉1805马、LT-185-5D、玉1765硬、玉1837半、ZX-970马、PL206、LT-129-W4 Qi319, N87-1, Shen136, A413, K12, 8802A, OH43-2, T58, 78599-1, P138, 12, H105W, 599, 231, TS164, X-178, 598, Feng1999ma, LT-117-2S, LT-126-1D, Yu1753ying, LT-215-1N, Yu1823ban, Yu1769ying, ZX-622ban, W-D98, J-D32, J-D53, Q6122-4-2-3, PL207, ZX-965ma, Yu1805ma, LT-185-5D, Yu1765ying, Yu1837ban, ZX-970ma, PL206, LT-129-W4
瑞德Reid group B73、掖478、掖488、CV、TS141、TS161、TS168、TS163、B68、B37、K22、TS165、CM、Ca317、81162、8723、郑22、H84、TS66、郑58、65232、TS110、Va102、锋1864硬、J-D103、LT-57-4D、J-D111、LT-59-2N、LT-187-1N、LT-230-11N、LT-149-9N、LT-15-4D、LT-206-4D、LT-107-3S、LT-231-1N、LT-208-7D、LT-129-2S、LT-20-4W、LT-898-2D、LT-85-4N、LT-205-2N、LT-222-4D、LT-222-1N、LT-184-6D、LT-186-5N、W-D3、W-D14、玉1772半、LT-172-2N、W-D25、LT-182-1N、LT-64-3N、LT-72-1N、LT-100-2S、LT-142-4W、LT-140-1D、LT-90-1N、LT-15-2N、LT-18-4S、W-D5、W-D6、W-D16 B73, Ye478, Ye488, CV, TS141, TS161, TS168, TS163, B68, B37, K22, TS165, CM, Ca317, 81162, 8723, Zheng22, H84, TS66, Zheng58, 65232, TS110, Va102, Feng1864ying, J-D103, LT-57-4D, J-D111, LT-59-2N, LT-187-1N, LT-230-11N, LT-149-9N, LT-15-4D, LT-206-4D, LT-107-3S, LT-231-1N, LT-208-7D, LT-129-2S, LT-20-4W, LT-898-2D, LT-85-4N, LT-205-2N, LT-222-4D, LT-222-1N, LT-184-6D, LT-186-5N, W-D3, W-D14, Yu1772ban, LT-172-2N, W-D25, LT-182-1N, LT-64-3N, LT-72-1N, LT-100-2S, LT-142-4W, LT-140-1D, LT-90-1N, LT-15-2N, LT-18-4S, W-D5, W-D6, W-D16
??字体加粗的材料为相应杂种优势类群的标准测验种。The bolded materials are the standard test species for the corresponding heterosis groups.


下载: 导出CSV
表6不同水分环境下与玉米叶形相关性状相关的SSR标记及其对表型变异的解释率(P< 0.01)
Table6.Significance and explained phenotypic variation of the SSR associated with leaf morphology in maize under different (P< 0.01)?%
标记
SSR
Bin LL (CK/DS) LW (CK/DS) LA (CK/DS) LOV (CK/DS) LS (CK/DS) LSC (CK/DS) LRI (CK/DS)
bnlg149 1.01 27.30/11.50
umc1124 1.05 5.79/3.24 2.97/—
umc2363 2.02 3.54/3.18 2.94/2.42 4.11/— 3.09/2.66
umc2214 2.09 3.41/3.00 2.88/2.65 2.47/2.51 2.42/2.45
umc2376 3.01 2.84/3.02
umc1742 3.04 2.91/— 2.60/— 2.55/—
bnlg1621a 4.06 12.31/19.25
phi331888 5.04 2.66/2.39 2.62/2.70 2.74/2.71 3.07/2.50 4.52/— 3.01/— 2.49/—
umc1378 7.00 3.13/3.25 2.87/— 4.15/4.20 3.75/4.01 2.53/2.62
bnlg1863 8.03 22.17/15.40 —/9.44
umc2356 8.05 —/3.54
umc2218 8.08 2.58/2.44
umc2134 9.05 3.18/— 4.15/7.86
bnlg1451 10.01 3.74/2.69
umc1345 10.03 3.24/9.64 27.41/2.25
??LL:叶长; LW:叶宽; LA:叶夹角; LOV:叶向值; LS:叶面积; LSC:叶形系数; LRI:叶片卷曲度。CK:正常供水处理; DS:干旱胁迫处理。LL: leaf length; LW: leaf width; LA: leaf angle; LOV: leaf orientation value; LS: leaf size; LSC: leaf shape coefficient; LRI: leaf rolling index. CK: normal water treatment; DS: drought stress treatment.


下载: 导出CSV

参考文献(44)
[1]ZHAO X Q, ZHANG J W, FANG P, et al. Comparative QTL analysis for yield components and morphological traits in maize (Zea mays L.) under water-stressed and well-watered conditions[J]. Breeding Science, 2019, 69(4):621-632 doi: 10.1270/jsbbs.18021
[2]ZHAO X Q, FANG P, ZHANG J W, et al. QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.)[J]. Plant Breeding, 2018, 137(1):60-72 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bfb3d3cf562c989ffe0b7e84a7b2ef3
[3]赵小强, 姬祥卓, 彭云玲.花期玉米(Zea mays)穗三叶叶形结构的遗传效应及配合力分析[J].分子植物育种, 2020, 18(9):3024-3031 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz202009034
ZHAO X Q, JI X Z, PENG Y L. Analysis of combining ability and genetic effect for leaf shape about the three-ear-leaves at flowering stage in Zea mays[J]. Molecular Plant Breeding, 2020, 18(9):3024-3031 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz202009034
[4]KU L X, ZHANG J, GUO S L, et al. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.)[J]. Journal of Experimental Botany, 2012, 63(1):261-274 doi: 10.1093/jxb/err277
[5]KU L X, ZHAO W M, ZHANG J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2010, 121(5):951-959 doi: 10.1007/s00122-010-1364-z
[6]郭书磊, 张君, 齐建双, 等.玉米叶形相关性状的Meta-QTL及候选基因分析[J].植物学报, 2018, 53(4):487-501 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb201804009
GUO S L, ZHANG J, QI J S, et al. Analysis of Meta-quantitative trait loci and their candidate genes related to leaf shape in maize[J]. Chinese Bulletin of Botany, 2018, 53(4):487-501 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb201804009
[7]RIBAUT J M, BETRAN J, MONNEVEUX P, et al. Drought tolerance in maize[M]//BENNETZEN J L, HAKE S C. Handbook of Maize: Its Biology. New York: Springer, 2009: 311-344
[8]BENNETZEN J L, HAKE S C. Handbook of Maize:Its Biology[M]. New York:Springer, 2010:324
[9]赵小强, 陆晏天, 白明兴, 等.不同株型玉米基因型对干旱胁迫的响应分析[J].草业学报, 2020, 29(2):149-162 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb202002015
ZHAO X Q, LU Y T, BAI M X, et al. Response of maize genotypes with different plant architecture to drought stress[J]. Acta Prataculturae Sinica, 2020, 29(2):149-162 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb202002015
[10]赵小强.玉米株型相关耐旱遗传机理研究[D].兰州: 甘肃农业大学, 2018
ZHAO X Q. Genetic mechanisms study of drought tolerance related to plant architecture in maize (Zea mays L.)[D]. Lanzhou: Gansu Agricultural University, 2018
[11]马娟, 王铁固, 张怀胜, 等.玉米叶夹角、叶向值主基因+多基因遗传模型分析[J].河南农业科学, 2012, 41(5):15-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201205004
MA J, WANG T G, ZHANG H S, et al. The major genes plus polygenes genetic analysis on leaf angle and leaf orientation value in maize[J]. Journal of Henan Agricultural Sciences, 2012, 41(5):15-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201205004
[12]GRIFFING B. A generalised treatment of the use of diallel crosses in quantitative inheritance[J]. Heredity, 1956, 10(1):31-50 doi: 10.1038/hdy.1956.2
[13]陈宛秋, 张彪, 康继伟, 等.几个常用玉米自交系株型性状的遗传及其在株型育种中的利用[J].四川农业大学学报, 1993, 11(4):563-567 http://www.cqvip.com/Main/Detail.aspx?id=1176552
CHEN W Q, ZHANG B, KANG J W, et al. Inheritance of plant characters and yield of some corn inbred lines often used in breeding and its potential ultilization[J]. Journal of Sichuan Agricultural University, 1993, 11(4):563-567 http://www.cqvip.com/Main/Detail.aspx?id=1176552
[14]MICKELSON S M, STUBER C S, SENIOR L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73×Mo17 population of maize[J]. Crop Science, 2002, 42(6):1902-1909 doi: 10.2135/cropsci2002.1902
[15]PAN Q C, XU Y C, LI K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations[J]. Plant Physiology, 2017, 175(2):858-873 http://www.ncbi.nlm.nih.gov/pubmed/28838954
[16]WANG Y J, XU J, DENG D X, et al. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.)[J]. Planta, 2016, 243(2):459-471 doi: 10.1007/s00425-015-2419-9
[17]ZONDERVAN K T, CARDON L R. The complex interplay among factors that influence allelic association[J]. Nature Reviews Genetics, 2004, 5(2):89-100 doi: 10.1038/nrg1270
[18]DUCROCQ S, MADUR D, VEYRIERAS J B, et al. Key impact of Vgt1 on flowering time adaptation in maize:Evidence from association mapping and ecogeographical information[J]. Genetics, 2008, 178(4):2433-2437 doi: 10.1534/genetics.107.084830
[19]BRESEGHELLO F, SORRELLS M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars[J]. Genetics, 2006, 172(2):1165-1177 doi: 10.1534/genetics.105.044586
[20]EIZENGA G C, AGRAMA H A, LEE F N, et al. Identifying novel resistance genes in newly introduced blast resistant rice germplasm[J]. Crop Science, 2006, 46(5):1870-1878 doi: 10.2135/cropsci2006.0143
[21]ZHAO X Q, PENG Y L, ZHANG J W, et al. Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions[J]. Crop Science, 2018, 58(2):507-520 doi: 10.2135/cropsci2016.12.0991
[22]ZHAO X Q, PENG Y L, ZHANG J W, et al. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments[J]. Molecular Breeding, 2017, 37(7):91 doi: 10.1007/s11032-017-0686-9
[23]赵小强, 任斌, 彭云玲, 等. 8种水旱环境下2个玉米群体穗部性状QTL间的上位性及环境互作效应分析[J].作物学报, 2019, 45(6):856-871 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201906007
ZHAO X Q, REN B, PENG Y L, et al. Epistatic and QTL×environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments[J]. Acta Agronomica Sinica, 2019, 45(6):856-871 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb201906007
[24]赵小强, 方鹏, 彭云玲, 等.基于两个相关群体的玉米7个主要农艺性状遗传分析和QTL定位[J].草业学报, 2018, 27(9):152-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201809015
ZHAO X Q, FANG P, PENG Y L, et al. Genetic analysis and QTL mapping for seven agronomic traits in maize (Zea mays) using two connected populations[J]. Acta Prataculturae Sinica, 2018, 27(9):152-165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201809015
[25]PEPPER G E, PEARCE R B, MOCK J J. Leaf orientation and yield of maize[J]. Crop Science, 1977, 17(6):883-886 doi: 10.2135/cropsci1977.0011183X001700060017x
[26]YANG G H, DONG Y B, LI Y L, et al. Integrative detection and verification of QTL for plant traits in two connected RIL populations of high-oil maize[J]. Euphytica, 2015, 206:203-223 doi: 10.1007/s10681-015-1502-4
[27]YANG D L, LIU Y, CHANG H B, et al. Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes[J]. BMC Genetics, 2016, 17(1):94 doi: 10.1186/s12863-016-0399-9
[28]赵小强, 方鹏, 彭云玲, 等.基于两个相关群体的玉米6个穗部性状QTL定位[J].农业生物技术学报, 2018, 26(5):729-742 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyswjsxb201805001
ZHAO X Q, FANG P, PENG Y L, et al. QTL mapping for six ear-related traits based on two maize (Zea mays) related populations[J]. Journal of Agricultural Biotechnology, 2018, 26(5):729-742 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyswjsxb201805001
[29]张振平, 孙世贤, 张悦, 等.玉米叶部形态指标与抗旱性的关系研究[J].玉米科学, 2009, 17(3):68-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx200903016
ZHANG Z P, SUN S X, ZHANG Y, et al. Study on the relations of leaf morphology indexes and drought resistance of maize[J]. Journal of Maize Sciences, 2009, 17(3):68-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx200903016
[30]ISIDRO J, KNOX R, CLARKE F, et al. Quantitative genetic analysis and mapping of leaf angle in durum wheat[J]. Planta, 2012, 236(6):1713-1723 doi: 10.1007/s00425-012-1728-5
[31]SOHRABI M, RAFII M Y, HANAFI M M, et al. Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits[J]. The Scientific World Journal, 2012, 2012:416291 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003911235
[32]张飞, 王艳秋, 朱凯, 等.干旱胁迫下适宜机械化生产高粱品种株型变化及生理响应[J].江苏农业科学, 2018, 46(1):49-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201801013
ZHANG F, WANG Y Q, ZHU K, et al. Plant type changes and physiological characteristics of sorghum suitable to mechanization under drought stress[J]. Jiangsu Agricultural Sciences, 2018, 46(1):49-51 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201801013
[33]朱宗河, 郑文寅, 张学昆.甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J].中国农业科学, 2011, 44(9):1775-1787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201109003
ZHU Z H, ZHENG W Y, ZHANG X K. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed (Brassica napus L.)[J]. Scientia Agricultura Sinica, 2011, 44(9):1775-1787 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201109003
[34]MASARIRAMBI M T, MANDISODZA F C, MASHINGAIDZE A B, et al. Influence of plant population and seed tuber size on growth and yield components of potato (Solanum tuberosum)[J]. International Journal of Agriculture and Biology, 2012, 14(4):545-549 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=78943555&site=ehost-live
[35]SENIOR M L, MURPHY J P, GOODMAN M M, et al. Utility of SSRs for determining genetic similarities an relationship in maize using an agarose gel system[J]. Crop Science, 1998, 38(4):1088-1098 doi: 10.2135/cropsci1998.0011183X003800040034x
[36]WU X, LI Y X, SHI Y S, et al. Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping[J]. Theoretical and Applied Genetics, 2014, 127(3):621-631 doi: 10.1007/s00122-013-2246-y
[37]INGVARSSON P K, STREET N R. Association genetics of complex traits in plants[J]. New Phytologist, 2011, 189(4):909-922 doi: 10.1111/j.1469-8137.2010.03593.x
[38]TUBEROSA R, SALVI S, SANGUINETI M C, et al. Mapping QTLs regulating morpho-physiological traits and yield:Case studies, shortcomings and perspectives in drought-stressed maize[J]. Annals of Botany, 2002, 89(7):941-963 doi: 10.1093/aob/mcf134
[39]LI C H, LI Y X, SHI Y S, et al. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations[J]. PLoS One, 2015, 10(3):e0121624 doi: 10.1371/journal.pone.0121624
[40]BOLDUC N, HAKE S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1[J]. The Plant Cell, 2009, 21(6):1647-1658 doi: 10.1105/tpc.109.068221
[41]刘鹏飞, 蒋锋, 王汉宁, 等.玉米叶夹角和叶向值的QTL定位[J].核农学报, 2012, 26(2):231-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201202007
LIU P F, JIANG F, WANG H N, et al. QTL mapping for leaf angle and leaf orientation in corn[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(2):231-237 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201202007
[42]NAGASAKI H, SAKAMOTO T, SATO Y, et al. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15[J]. The Plant Cell, 2001, 13(9):2085-2098 doi: 10.1105/TPC.010113
[43]JUN S E, CHO K H, HWANG J Y, et al. Comparative analysis of the conserved functions of Arabidopsis DRL1 and yeast KTI12[J]. Molecular and Cells, 2015, 38(3):243-250 doi: 10.14348/molcells.2015.2297
[44]EFRONI Ⅰ, HAN S K, KIM H J, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses[J]. Developmental Cell, 2013, 24(4):438-445 doi: 10.1016/j.devcel.2013.01.019

相关话题/遗传 结构 环境 甘肃农业大学 基金