删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

盐地碱蓬根际土壤细菌群落结构及其功能

本站小编 Free考研考试/2022-01-01

孙建平,
刘雅辉,,
左永梅,
韩民利,
张虹伟,
吕晶晶
河北省农林科学院滨海农业研究所/河北省盐碱地绿化工程技术中心/唐山市耐盐植物重点实验室 唐山 063299
基金项目: 河北省农林科学院基本业务费201810101
河北省农林科学院现代农业科技创新工程项目2019-1-6-2

详细信息
作者简介:孙建平, 主要研究方向为滨海盐碱地改良与农业高效利用。E-mail:bhssjp@163.com
通讯作者:刘雅辉, 主要研究方向为盐碱地改良与农业高效利用。E-mail:bhslyh@126.com
中图分类号:S154.36

计量

文章访问数:362
HTML全文浏览量:8
PDF下载量:243
被引次数:0
出版历程

收稿日期:2020-03-04
录用日期:2020-05-29
刊出日期:2020-10-01

The bacterial community structure and function of Suaeda salsa rhizosphere soil

SUN Jianping,
LIU Yahui,,
ZUO Yongmei,
HAN Minli,
ZHANG Hongwei,
LYU Jingjing
Institute of Coastal Agricultural, Hebei Academy of Agriculture and Forestry Sciences/Saline and Alkali Land Greening Engineering Technology Center of Heibei Province/Tangshan Key Laboratory of Plant Salt Tolerance Research, Tangshan 063299, China
Funds: This study was supported by the Basic Business Expenses of Hebei Academy of Agricultural and Forestry Sciences201810101
The Agriculture Science and Technology Innovation Project of Hebei Academy of Agricultural and Forestry Sciences2019-1-6-2

More Information
Corresponding author:LIU Yahui, E-mail:bhslyh@126.com


摘要
HTML全文
(8)(3)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:盐地碱蓬作为生物改良盐碱地的理想材料,其根际土壤微生物对土壤改良发挥着重要作用。为了深入探索环渤海滨海盐碱地碱蓬根际土壤细菌群落结构组成及其功能,采用Illumina Misep高通量测序平台对环渤海地区滨海盐碱地盐地碱蓬根际土壤和裸地土壤进行测序。从16个样本中获得有效序列734 792条,4 285个OTUs,归属于41门、100纲、282目、400科、892属、1 577种。盐地碱蓬根际土壤细菌群落由变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯曲门(Chloroflexi)、拟杆菌门(Bacteroidetes)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、厚壁菌门(Firmicutes)、蓝藻细菌门(Cyanobacteria)、髌骨细菌门(Patescibacteria、浮霉菌门(Planctomycetes)组成。Alpha多样性计算结果表明,盐地碱蓬根际土壤细菌群落结构多样性高并与裸地土壤间差异显著;LEfSe(LDA Effect Size)分析发现,盐地碱蓬与裸地差异指示种明显不同。PCoA与相关性Heatmap表明,盐地碱蓬、速效氮、速效钾、速效磷、电导率是影响土壤细菌目类水平群落组成的主要因子。PICRUSt(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States)分析表明微生物群落在新陈代谢等40个功能方面盐地碱蓬根际土壤比裸地土壤高。本研究表明盐地碱蓬覆盖能够降低土壤盐分,增加土壤养分,对土壤细菌群落多样性及其功能有积极作用。
Abstract:Suaeda salsa is an ideal agent for the biological enrichment of saline-alkali soil. Microorganisms in the rhizosphere of this plant play an essential role in soil improvement. The Illumina Misep high-throughput sequencing platform was used to explore the structural composition and function of the bacterial community in the rhizosphere soil of S. salsa and bare soil from coastal saline-alkali land in the Bohai Bay Rim area of Hebei, Shandong, and Tianjin, China. In total, 734 792 effective sequences were obtained from 16 samples, of which 4 285 OUTs belonged to 41 phyla, 100 classes, 282 orders, 400 families, 892 genera, and 1 577 species. The bacterial community in the rhizosphere soil of S. salsa contained Proteobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Firmicutes, Cyanobacteria, Patescibacteria, and Planctomycetes. These results were consistent with the Alpha diversity analysis results, indicating that the community was highly diversified and significantly different from that of the bare soil. The LEfSe (LDA Effect Size) analysis showed that indicator species differentially occurred in S. salsa and bare soils. In S. salsa soil, Cyanobacteria, Acidobacteria, Alphaproteobacteria, Oxyphotobacteria, Chloroflexi, Rhizobiales, Nostocales, Sphingomonadales, Sphingomonadaceae, and Bacillus were the indicator species. Based on principal coordinates analyses and a correlation heatmap, the main factors affecting the soil bacterial community at order level were the presence of S. salsa, alkali-hydrolyzable nitrogen, available potassium, available phosphorus, and electrical conductivity. Also, Ectothiorhodospira and Balneolaceae could survive in bare soil with poor fertility, high salinity, and a viscous structure. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) analysis showed that 304 metabolic pathways at pathway level 3 were active in both soil, of which 41 pathways, especially those involving in metabolism were different between S. salsa soil and bare land soil. These results indicated that S. salsa growth has a positive effect on the diversity and function of soil bacterial community by improving soil structure and increasing nutrients levels. These findings may be applied to improve saline-alkali land, optimize soil environment, and enhance its usefulness and sustainability.

HTML全文


图1滨海盐地碱蓬根际土壤及裸地土壤细菌的稀释曲线
Figure1.Rarefaction curves of bacteria in bare soil and rhizosphere soil of Suaeda salsa in the coastal saline-alkali land


下载: 全尺寸图片幻灯片


图2滨海盐碱地盐地碱蓬根际土壤与裸地土壤细菌群落组成
Figure2.Composition of the bacterial community in rhizosphere soil of Suaeda salsa and bare soil in the coastal saline-alkali land


下载: 全尺寸图片幻灯片


图3滨海盐碱地盐地碱蓬根际土壤(J)与裸地土壤(D)优势物种组成比例及其在样本中的分布比例
左半圈表示样本中物种组成情况, 外层彩带颜色代表来自哪一分组, 内层彩带颜色代表物种, 长度代表该物种在对应样本中的相对丰度; 右半圈表示该分类学水平下物种在不同样本中的分布比例情况, 外层彩带颜色代表物种, 内层彩带颜色代表不同分组, 长度代表该样本在某一物种中的分布比例。
Figure3.Composition proportion of dominant species in rhizosphere soil of Suaeda salsa (J) and bare soil (D) and their distribution proportions in all samples of the coastal saline-alkali land
The left half circle shows the species composition in the sample, the color of the outer ribbon represents the group from which it comes, the color of the inner ribbon represents the species, and the length represents the relative abundance of the species in the corresponding sample. The right half circle shows the distribution proportion of the species in different samples under the taxonomic level, the outer ribbon represents the species, and the color of the inner ribbon represents different groups, the length represents the distribution proportion of the sample in a certain species.


下载: 全尺寸图片幻灯片


图4滨海盐碱地盐地碱蓬根际土壤与裸地土壤组间比较分析
D:裸地土壤; J:盐地碱蓬根际土壤。
Figure4.Group comparison analyses between rhizosphere soil of Suaeda salsa and bare soil in the coastal saline-alkali land
D: bare land soil; J: rhizosphere soil of Suaeda salsa.


下载: 全尺寸图片幻灯片


图5滨海盐碱地盐地碱蓬根际土壤与裸地土壤中的特殊群落及影响力
D:裸地土壤; J:盐地碱蓬根际土壤。不同颜色节点表示在对应组别中显著富集, 且对组间差异存在显著影响的微生物类群; 淡黄色节点表示在不同分组中均无显著差异, 或对组间差异无显著影响的微生物类群; 小写字母代表差异指示种, 其中p代表门, c代表纲, o代表目, f代表科, g代表属。
Figure5.Special communities and their effects in rhizosphere soil of Suaeda salsa and bare soil in in the coastal saline-alkali land
D: bare land soil; J: rhizosphere soil of Suaeda salsa. The nodes in different colors represent the microbial groups which are significantly enriched in the corresponding groups and have a substantial impact on between-group variance. The yellowish nodes denote the microbial groups which are not significantly different between groups and or have no significant effect on between-group variance. The lowercase letters represent difference indicator species, of which "p" means phylum, "c" means class, "o" means order, "f" means family and "g" means genus.


下载: 全尺寸图片幻灯片


图6滨海盐碱地盐地碱蓬根际土壤(J)与裸地土壤(D)的系统发生进化关系
Figure6.Evolutionary relationship in rhizosphere soil of Suaeda salsa (J) and bare soil (D) in the coastal saline-alkali land


下载: 全尺寸图片幻灯片


图7滨海盐碱地土壤细菌目类水平群落与环境因子的相关分析
x轴和y轴分别为环境因子和物种, 通过计算获得相关性R值和P值。R值在图中以不同颜色展示, 右侧图例是不同R值的颜色区间; P值则用*标出, * 0.01 < P≤0.05, ** 0.001 < P≤0.01, *** P≤0.001。
Figure7.Analysis of correlation between bacterial community at the order level and environmental factors in the coastal saline-alkali land
The x-axis and y-axis are environmental factors and species respectively. The correlation R value and P value are obtained by calculation. R values are shown in different colors, and the legend on the right is the color range of different R values. P values are marked with * for 0.01 < P≤0.05, ** for 0.001 < P≤0.01, *** for P≤0.001.


下载: 全尺寸图片幻灯片


图8滨海盐碱地盐地碱蓬根际土壤(J)与裸地土壤(D)PICRUSt功能预测
Figure8.Prediction of PICRUst function in rhizosphere soil of Suaeda salsa (J) and bare soil (D) in the coastal saline-alkali land


下载: 全尺寸图片幻灯片

表1样地基本概况
Table1.Basic information of the soil samples
样地位置
Sample site location
采样点
Sample plot
地理位置
Geographical position
海拔
Altitude (m)
主要植物
Main plant
天津北大港
Tianjin Beidagang
D1, J4, J5, J6 38°44′25.24″N, 117°14′13.36″E 2 盐地碱蓬、芦苇、金叶榆树
Suaeda salsa, Phragmites communis, Ulmus pumila
沧州黄骅市南排河
Nanpaihe Town, Huanghua City, Cangzhou City, Hebei Province
D2, J7, J8, J9 38°25′42.89″N, 117°35′14.58″E 2 盐地碱蓬、芦苇、知风草
S. salsa, P. communis, Eragrostis ferruginea
山东东营市东营区
Dongying District, Dongying City, Shandong Province
D2, J10, J11 37°24′12.31″N, 118°41′10.17″E 0 盐地碱蓬、柽柳、白刺
S. salsa, Tamarix chinensis, Nitraria schoberi
河北唐山市曹妃甸区
Caofeidian District, Tangshan City, Hebei Province
D4, D5, J1, J2, J3 39°12′48.44″N, 118°27′46.43″E 0 盐地碱蓬、芦苇、柽柳
S. salsa, P. communis, T. chinensis
D:裸地土壤; J:碱蓬根际土壤。D: bare land soil; J: rhizosphere soil of Suaeda salsa.


下载: 导出CSV
表2滨海盐碱地盐地碱蓬根际土壤及裸地土壤的化学性质
Table2.Chemical properties of rhizosphere soil of Suaeda salsa and bare soil in the coastal saline-alkali land
样本
Sample
pH 电导率
Electrical conductivity (dS·m-1)
碱解氮
Alkali-hydrolyzable N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
有机质
Organic matter (g·kg-1)
裸地土壤Bare land soil 7.46±0.18a 6.47±5.10a 26.80±26.15b 14.91±2.41b 292.90±30.38b 9.45±1.63b
根际土壤Rhizosphere soil 7.48±0.22a 1.30±1.54b 90.71±48.58a 20.45±3.31a 586.14±110.63a 16.00±9.27a
同列不同小写字母表示差异显著(P≤0.05)。Different lowercase letters in the same column indicate significant differences at P≤0.05 level.


下载: 导出CSV
表3滨海盐碱地盐地碱蓬根际土壤及裸地土壤细菌的生物多样性指数
Table3.Biodiversity indexes of bacteria in rhizosphere soil of Suaeda salsa and bare soil in the coastal saline-alkali land
多样性指数
Diversity index
裸地土壤
Bare land soil
根际土壤
Rhizosphere soil
Sobs指数Sobs index 660.80±169.95 705.36±110.52
香农指数Shannon index 4.75±0.38 5.05±0.40
辛普森指数Simpson index 0.024±0.009 0.019±0.014*
Ace指数Ace index 802.58±173.58 800.87±129.08
Chao指数Chao index 838.30±179.28 817.32±129.10
覆盖度指数Coverage index 0.994±0.001 0.995±0.001
*表示裸地土壤和盐地碱蓬根际土壤在P≤0.05水平差异显著。* means significant differences between bare land soil and rhizosphere soil of S. glauca at P≤0.05.


下载: 导出CSV

参考文献(36)
[1]PANKE-BUISSE K, POOLE A C, GOODRICH J K, et al. Selection on soil microbiomes reveals reproducible impacts on plant function[J]. The ISME Journal, 2015, 9(4):980-989 doi: 10.1038/ismej.2014.196
[2]戴雅婷, 闫志坚, 解继红, 等.基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J].土壤学报, 2017, 54(3):735-748 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201703018
DAI Y T, YAN Z J, XIE J H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 2017, 54(3):735-748 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201703018
[3]牛世全, 龙洋, 李海云, 等.应用Illumina MiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J].微生物学通报, 2017, 44(9):2067-2078 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201709007
NIU S Q, LONG Y, LI H Y, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system[J]. Microbiology China, 2017, 44(9):2067-2078 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201709007
[4]李劲松, 郭凯, 李晓光, 等.模拟干旱和盐碱胁迫对碱蓬、盐地碱蓬种子萌发的影响[J].中国生态农业学报, 2018, 26(7):1011-1018 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0708&flag=1
LI J S, GUO K, LI X G, et al. Effects of PEG, NaCl and Na2CO3 stresses on Suaeda glauca and Suaeda salsa seed germination[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1011-1018 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0708&flag=1
[5]杨策, 陈环宇, 李劲松, 等.盐地碱蓬生长对滨海重盐碱地的改土效应[J].中国生态农业学报(中英文), 2019, 27(10):1578-1586 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1012&flag=1
YANG C, CHEN H Y, LI J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10):1578-1586 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1012&flag=1
[6]张蛟, 崔士友, 冯芝祥.种植碱蓬和秸秆覆盖对沿海滩涂极重度盐土盐分动态与脱盐效果的影响[J].应用生态学报, 2018, 29(5):1686-1694 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201805037
ZHANG J, CUI S Y, FENG Z X. Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas[J]. Chinese Journal of Applied Ecology, 2018, 29(5):1686-1694 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201805037
[7]谢欠影, 曹晟阳, 赵晨阳, 等.翅碱蓬响应高盐胁迫的分子机制研究[J].大连海洋大学学报, 2019, 34(2):160-167 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlscxyxb201902002
XIE Q Y, CAO S Y, ZHAO C Y, et al. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress[J]. Journal of Dalian Ocean University, 2019, 34(2):160-167 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlscxyxb201902002
[8]尹德洁, 张洁, 荆瑞, 等.山东滨海盐渍区植物群落与土壤化学因子的关系[J].应用生态学报, 2018, 29(11):3521-3529 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201811003
YIN D J, ZHANG J, JING R, et al. Relationships between plant community and soil chemical factors in coastal saline area of Shandong, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3521-3529 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201811003
[9]ZHOU Y J, LI J H, ROSS FRIEDMAN C, et al. Variation of soil bacterial communities in a chronosequence of rubber tree (Hevea brasiliensis) plantations[J]. Frontier in Plant Science, 2017, 8:849 doi: 10.3389/fpls.2017.00849
[10]PROBANDT D, EICKHORST T, ELLROTT A, et al. Microbial life on a sand grain:from bulk sediment to single grains[J]. The ISME Journal, 2018, 12(2):623-633 doi: 10.1038/ismej.2017.197
[11]CHU D M, MA J, PRINCE A L, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery[J]. Nature Medicine, 2017, 23(3):314-326 doi: 10.1038/nm.4272
[12]刘小京.环渤海缺水区盐碱地改良利用技术研究[J].中国生态农业学报, 2018, 26(10):1521-1527 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1011&flag=1
LIU X J. Reclamation and utilization of saline soils in water-scarce regions of Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1521-1527 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1011&flag=1
[13]王晓利, 张春艳, 侯西勇. 1961-2017年环渤海地区气象干旱时空特征及致灾危险性评估[J].生态学报, 2019, 39(13):4647-4659 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201913006
WANG X L, ZHANG C Y, HOU X Y. Spatial-temporal characteristics and hazard risks of meteorological drought in Circum-Bohai-Sea region from 1961 to 2017[J]. Acta Ecologica Sinica, 2019, 39(13):4647-4659 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201913006
[14]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000:56-107
LU R K. Soil Argrochemistry Analysis Protocoes[M]. Beijing:China Agriculture Science Press, 2000:56-107
[15]XU N, TAN G C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74:1-8 doi: 10.1016/j.ejsobi.2016.02.004
[16]冯翠娥, 岳思君, 简阿妮, 等.硒砂瓜连作对土壤真菌群落结构的影响[J].中国生态农业学报(中英文), 2019, 27(4):537-544 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0404&flag=1
FENG C E, YUE S J, JIAN A N, et al. The effect of continuous cropping of selenium melon on soil fungal community structure[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4):537-544 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0404&flag=1
[17]张传更.干湿交替和外加氮源对土壤碳氮转化及微生物多样性的影响[D].北京: 中国农业科学院, 2018
ZHANG C G. Effects of drying-wetting cycles and additional nitrogen sources on soil carbon and nitrogen transformation and microbial diversity[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018
[18]徐方继, 李桂鼎, 李沁元, 等.怒江大峡谷怒江州段土壤放线菌多样性[J].微生物学通报, 2018, 45(2):250-265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201802003
XU F J, LI G D, LI Q Y, et al. Diversity of actinomycetes in soil from Nujiang Grand Canyon in Nujiang Prefecture[J]. Microbiology China, 2018, 45(2):250-265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201802003
[19]赵娇, 谢慧君, 张建.黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析[J].环境科学, 2020, 41(3):1449-1455 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx202003049
ZHAO J, XIE H J, ZHANG J. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta[J]. Environmental Science, 2020, 41(3):1449-1455 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx202003049
[20]杜滢鑫, 谢宝明, 蔡洪生, 等.大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J].生态学报, 2016, 36(3):740-747 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201603017
DU Y X, XIE B M, CAI H S, et al. Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing saline-alkali soil region[J]. Acta Ecologica Sinica, 2016, 36(3):740-747 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201603017
[21]MENDHAM D S, SANKARAN K V, O'CONNELL A M, et al. Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment[J]. Soil Biology and Biochemistry, 2002, 34(12):1903-1912 doi: 10.1016/S0038-0717(02)00205-5
[22]张骏达, 李素艳, 孙向阳, 等.基于高通量测序技术的不同年代公园绿地土壤细菌多样性[J].微生物学通报, 2019, 46(1):65-74 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201901007
ZHANG J D, LI S Y, SUN X Y, et al. Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing[J]. Microbiology China, 2019, 46(1):65-74 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wswxtb201901007
[23]罗达, 史作民, 李东胜.枯落物处理对格木林土壤碳氮转化和微生物群落结构的短期影响[J].应用生态学报, 2018, 29(7):2259-2268 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201807021
LUO D, SHI Z M, LI D S. Short-term effects of litter treatment on soil C and N transformation and microbial community structure in Erythrophleum fordii plantation[J]. Chinese Journal of Applied Ecology, 2018, 29(7):2259-2268 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201807021
[24]丁军军.神农架森林土壤微生物沿海拔分布格局及形成机制[D].北京: 清华大学, 2016
DING J J. Biogeographical pattern and mechanisms of forest soil microbial community along an elevation gradient in Shennongjia national nature reserve[D]. Beijing: Tsinghua University, 2016
[25]ZHANG Y G, LIU X, CONG J, et al. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow[J]. Molecular Ecology, 2017, 26(14):3676-3686 doi: 10.1111/mec.14148
[26]方圆, 王娓, 姚晓东, 等.我国北方温带草地土壤微生物群落组成及其环境影响因素[J].北京大学学报:自然科学版, 2017, 53(1):142-150 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201701015
FANG Y, WANG W, YAO X D, et al. Soil microbial community composition and environmental controls in northern temperate steppe of China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1):142-150 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201701015
[27]吴求生, 龙健, 廖洪凯, 等.贵州茂兰喀斯特森林不同小生境下土壤细菌群落特征[J].应用生态学报, 2019, 30(1):108-116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201901013
WU Q S, LONG J, LIAO H K, et al. Soil bacterial community characteristics under different microhabitat types on Maolan karst forest, Guizhou, Southwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(1):108-116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201901013
[28]赵帆, 赵密珍, 王钰, 等.基于高通量测序研究草莓根际微生物群落结构和多样性[J].土壤, 2019, 51(1):51-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201901008
ZHAO F, ZHAO M Z, WANG Y, et al. Microbial community structures and diversities in strawberry rhizosphere soils based on high-throughput sequencing[J]. Soils, 2019, 51(1):51-60 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201901008
[29]夏珺.山东省三处盐场环境中嗜盐菌多样性调查及六株嗜盐新菌的分类学研究[D].济南: 山东大学, 2016
XIA J. Research on diversity of halophile from three different salterns of Shandong Province and taxonomy analysis of six novel halophilic strains[D]. Jinan: Shandong University, 2016
[30]穆大帅, 卢德臣, 郑维爽, 等.我国海洋细菌新物种鉴定与资源研发进展[J].生物资源, 2017, 39(6):391-397 http://www.cnki.com.cn/Article/CJFDTotal-AJSH201706001.htm
MU D S, LU D C, ZHENG W S, et al. Advances in marine bacterial identification and resource development in China[J]. Biotic Resources, 2017, 39(6):391-397 http://www.cnki.com.cn/Article/CJFDTotal-AJSH201706001.htm
[31]叶协锋, 张友杰, 鲁喜梅, 等.土壤微生物与土壤营养关系研究进展[J].土壤通报, 2009, 40(6):237-241 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201001048
YE X F, ZHANG Y J, LU X M, et al. Research advance on relationship between the soil microbes and soil nutrition[J]. Chinese Journal of Soil Science, 2009, 40(6):237-241 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trtb201001048
[32]ROMANIUK R, GIUFFRé L, COSTANTINI A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J]. Ecological Indicators, 2011, 11(5):1345-1353 doi: 10.1016/j.ecolind.2011.02.008
[33]崔尹赡.三七根际土壤细菌的群落结构与功能研究[D].昆明: 昆明理工大学, 2017
CUI Y S. Bacterial community structure and function in rhizospheric soil of Panax notoginseng[D]. Kunming: Kunming University of Science and Technology, 2017
[34]段鹏飞, 陈彦, 张菲, 等.芒草种植对土壤细菌群落结构和功能的影响[J].应用生态学报, 2019, 30(6):2030-2038 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201906028
DUAN P F, CHEN Y, ZHANG F, et al. Effect of Miscanthus planting on the structure and function of soil bacterial community[J]. Chinese Journal of Applied Ecology, 2019, 30(6):2030-2038 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201906028
[35]代金霞, 田平雅, 张莹, 等.银北盐渍化土壤中6种耐盐植物根际细菌群落结构及其多样性[J].生态学报, 2019, 39(8):2705-2714 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201908007
DAI J X, TIAN P Y, ZHANG Y, et al. Rhizobacteria community structure and diversity of six salt-tolerant plants in Yinbei saline soil[J]. Acta Ecologica Sinica, 2019, 39(8):2705-2714 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201908007
[36]SCIUTO K, MORO I. Cyanobacteria:The bright and dark sides of a charming group[J]. Biodiversity and Conservation, 2015, 24(4):711-738 doi: 10.1007/s10531-015-0898-4

相关话题/土壤 微生物 结构 图片 生态