删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

设施黄瓜菜田土壤镉污染预测模型及阈值研究

本站小编 Free考研考试/2022-01-01

许芮,
曹石,
刘猛,
张惠,
刘月涵,
吕诗,
段亚军,
张玉坤,
杨志新,
河北农业大学资源与环境科学学院/河北省农田生态环境重点实验室/河北省蔬菜产业协同创新中心 保定 071000
基金项目: 河北省重点研发计划项目19223811D
国家重点研发计划项目2018YFD0800402

详细信息
作者简介:许芮, 主要从事农业环境污染与治理研究。E-mail:13933507769@163.com
通讯作者:杨志新, 主要研究方向为生态、环境质量评价与监控研究。E-mail:yangzhixin@126.com
中图分类号:X53

计量

文章访问数:235
HTML全文浏览量:5
PDF下载量:144
被引次数:0
出版历程

收稿日期:2020-03-10
录用日期:2020-04-26
刊出日期:2020-10-01

Prediction model and threshold of soil cadmium contamination in cucumber greenhouses

XU Rui,
CAO Shi,
LIU Meng,
ZHANG Hui,
LIU Yuehan,
LYU Shi,
DUAN Yajun,
ZHANG Yukun,
YANG Zhixin,
College of Resources and Environmental Science, Hebei Agricultural University/Key Laboratory for Farmland Eco-environment of Hebei/Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding 071000, China
Funds: The study was supported by the Key R & D Project of Hebei Province19223811D
the National Key R & D Program of China2018YFD0800402

More Information
Corresponding author:YANG Zhixin, E-mail:yangzhixin@126.com


摘要
HTML全文
(1)(2)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为指导设施栽培的安全生产,以设施黄瓜为研究对象,通过连续2年镉(Cd)污染微区试验,对设施黄瓜菜田土壤Cd污染预测模型及阈值开展研究。结果表明,设施黄瓜土壤全量Cd和有效态Cd含量均与黄瓜Cd含量呈极显著的线性、对数、幂函数和指数关系,其中,全量Cd含量以指数预测模型的相关系数最高,有效态Cd含量以线性预测模型的相关系数最高。依据国家食品卫生标准,利用呈极显著相关的模型,提出了基于土壤pH≥7.5且质地为壤土的设施黄瓜土壤全量Cd和有效态Cd的风险阈值分别为2.13 mg·kg-1和0.26 mg·kg-1。利用土壤敏感性指标脲酶活性对该阈值进行验证,结果表明土壤全量Cd污染达2.74 mg·kg-1时才会引起土壤脲酶活性显著下降,而≤2.13 mg·kg-1的土壤全量Cd含量并未对土壤脲酶产生明显影响。可见,通过土壤脲酶指标验证后确定的阈值是可行的;并推荐当土壤中全量Cd>0.8 mg·kg-1且Cd≤2.13 mg·kg-1(pH≥7.5)时,选择黄瓜替代其他风险作物能够满足食用农产品质量的安全要求。该研究结果可为我国北方土壤Cd污染地区设施黄瓜的安全生产提供科学理论依据。
Abstract:The accumulation of heavy metals in soil is difficult to reverse, and this threatens China's agricultural safety. Nevertheless, the current implementation of heavy metal standards involves determining the risk screening value based on the pollutant items and pH value. However, there is a risk of contamination in edible agricultural products, which cannot meet quality and safety standards. In order to guide the selection of suitable crops for different soil types to avoid the risk of cadmium (Cd) pollution and to fully utilize land under the premise of safe production, thresholds for Cd pollution of different crops in different soil types need to be developed urgently. A Cd pollution micro-plot experiment with cucumber as the research object was conducted for two consecutive years to establish a prediction model and threshold of Cd pollution in greenhouse soils. The results showed that the total Cd and available Cd in greenhouse cucumber soil exhibited significant linear, logarithmic, power functions, and exponential relationships with the Cd content in cucumbers. The total Cd content showed the highest correlation coefficient according to the exponential model, while the available Cd content had the highest correlation coefficient according to the linear model. On the basis of soil conditions with pH≥7.5 and loamy texture, the risk thresholds for total Cd and available Cd in facility cucumber soils were proposed to be 2.13 mg·kg-1 and 0.26 mg·kg-1, respectively, based on extremely significant correlation models and national food hygiene standards. The proposed threshold was further verified by the soil urease activity; thereby, it was concluded that soil Cd contents less than or equal to 2.13 mg·kg-1 had no significant effect on soil urease. Hence, the determined thresholds are feasible after soil urease verification. When the Cd content in the soil is greater than 0.8 mg·kg-1 and less than or equal to 2.13 mg·kg-1 (soil pH≥7.5), cucumbers can be recommended to replace other risk crops to meet the quality and safety requirements of edible agricultural products. The results of this study provide a scientific and theoretical basis for cucumber planting in the Cd-contaminated soil area of northern China, and thus hold practical significance. In this study, referring to the large body of existing research on the threshold value of vegetable soil Cd, the threshold value of soil Cd obtained by the soil sensitive soil index of urease activity and by constructing a cucumber soil Cd mathematical model are mutually confirmed, and a safe and reasonable threshold value of soil Cd under the experimental conditions is obtained.

HTML全文


图1土壤全量Cd实测值(A)及有效态Cd实测值(B)含量对脲酶活性的影响
不同小写字母表示不同处理间差异显著。
Figure1.Effects of measured soil total Cd (A) and available Cd (B) contents on urease activity
Different lowercase letters indicate significant differences among different treatments.


下载: 全尺寸图片幻灯片

表1微区试验黄瓜与黄瓜土壤全Cd含量相关性模型及预测的土壤全量Cd污染的安全阈值
Table1.Correlation model of total Cd contents between cucumber and soil, and the predicted safety threshold for pollution of soil total Cd content
年份
Year
模型类型
Model
回归方程1)
Regression equation1)
决定系数
Coefficient of
determination (R2)
P 安全阈值
Safety threshold for pollution (mg?kg?1)
土壤pH范围
Scope of soil pH
2016 线性方程Linear equation y=43.613x+0.089 1 0.680** < 0.01 2.27 ≥7.5
对数方程Logarithmic equation y=1.255 9ln(x)+5.900 3 0.627** < 0.01 2.14
幂方程Power equation y=29.052x0.8719 0.664** < 0.01 2.13
指数方程Exponential equation y=0.538 8e28.769x 0.707** < 0.01 2.27
2017 线性方程Linear equation y=69.955x-0.2699 0.918** < 0.01 3.22 ≥7.5
对数方程Logarithmic equation y=1.188 8ln(x)+6.469 8 0.618** < 0.01 2.91
幂方程Power equation y=32.09x0.83 0.903** < 0.01 2.67
指数方程Exponential equation y=0.374e40.632x 0.927** < 0.01 2.85
1)回归方程中x为黄瓜Cd含量, y为土壤全量Cd含量。**表示在P < 0.01水平(双侧)极显著相关。1) In the regression equation, x is the Cd content of cucumber, y is the total Cd of soil. ** indicates a significant correlation at P < 0.01 level (both sides).


下载: 导出CSV
表22017年微区试验黄瓜Cd含量及土壤有效态Cd含量相关性模型(第2年)及预测的土壤有效态Cd污染的安全阈值
Table2.Correlation model between cucumber Cd content and soil available Cd content in 2017 (the second year) and the predicted safety threshold for pollution of soil available Cd content
模型类型
Model
回归方程1)
Regression equation1)
决定系数
Coefficient of determination (R2)
P 安全阈值
Safety threshold for pollution (mg?kg?1)
土壤pH范围
Scope of soil pH
线性方程Linear equation y=8.998 7x-0.049 85 0.679** < 0.01 0.40 ≥7.5
对数方程Logarithmic equation y=0.269 45ln(x)+1.233 0.616** < 0.01 0.42
幂方程Power equation y=29.883x1.511 3 0.650** < 0.01 0.32
指数方程Exponential equation y=0.025 11e46.994x 0.621** < 0.01 0.26
1)回归方程中x为黄瓜Cd含量, y为土壤有效态Cd含量。**表示在P < 0.01水平(双侧)极显著相关。1) In the regression equation, x is the Cd content of cucumber, y is the available Cd content of soil. ** indicates a significant correlation at P < 0.01 level (both sides).


下载: 导出CSV

参考文献(32)
[1]荣井荣, 朱丽娟, 罗中枢, 等.温室土壤与蔬菜重金属及类金属健康风险评价[J].环境卫生学杂志, 2018, 8(4):307-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwyx-wsx201804006
RONG J R, ZHU L J, LUO Z S, et al. Health risk assessment on heavy metals and metalloids in soil and vegetables of greenhouse[J]. Journal of Environmental Hygiene, 2018, 8(4):307-314 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwyx-wsx201804006
[2]孙硕, 李菊梅, 马义兵, 等.河北省蔬菜大棚土壤及蔬菜中重金属累积分析[J].农业资源与环境学报, 2019, 36(2):236-244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjyfz201902014
SUN S, LI J M, MA Y B, et al. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 2019, 36(2):236-244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjyfz201902014
[3]李杰, 祝凌, 仝利红, 等.蔬菜温室长期种植下土壤重金属累积风险评价[J].农业环境科学学报, 2018, 37(10):2159-2165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201810010
LI J, ZHU L, TONG L H, et al. Risk assessment of heavy metals accumulation in soils under long-term greenhouse vegetable cultivation conditions[J]. Journal of Agro-Environment Science, 2018, 37(10):2159-2165 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201810010
[4]梁蕾, 李季, 杨合法, 等.长期温室菜地土壤重金属累积状况及污染评价[J].环境化学, 2018, 37(7):1515-1524 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201807008
LIANG L, LI J, YANG H F, et al. Soil heavy metal accumulation and risk assessment in a long-term vegetable-growing greenhouse[J]. Environmental Chemistry, 2018, 37(7):1515-1524 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201807008
[5]茹淑华, 耿暖, 张国印, 等.河北省典型蔬菜产区土壤和蔬菜中重金属累积特征研究[J].生态环境学报, 2016, 25(8):1407-1411 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201608023
RU S H, GENG N, ZHANG G Y, et al. Heavy metals accumulation in soil and vegetable collected from typical vegetable production areas in Hebei Province[J]. Ecology and Environmental Sciences, 2016, 25(8):1407-1411 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201608023
[6]王明国, 师荣光, 李晓华.重金属污染的土壤安全评价与蔬菜健康研究进展[J].安徽农业科学, 2009, 37(24):11705-11708 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx200924145
WANG M G, SHI R G, LI X H. Research progress on soil safety assessment and vegetable health under heavy metal pollution[J]. Journal of Anhui Agricultural Sciences, 2009, 37(24):11705-11708 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnykx200924145
[7]李林艳, 朱明元.我国大米、蔬菜中铅镉污染监测的研究进展[J].实用预防医学, 2011, 18(9):1812-1813 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syyfyx201109093
LI L Y, ZHU M Y. Research progress on monitoring of lead and cadmium pollution in rice and vegetables in China[J]. Practical Preventive Medicine, 2011, 18(9):1812-1813 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syyfyx201109093
[8]郭智广, 徐为霞, 王毅红, 等.郑州地区蔬菜中铅、镉污染状况调查与分析[J].微量元素与健康研究, 2012, 1(1):33-35 http://qikan.cqvip.com/Qikan/Article/Detail?id=40707429
GUO Z G, XU W X, WANG Y H, et al. Investigation and analysis on the status of lead and cadmium pollution in vegetables in Zhengzhou[J]. Studies of Trace Elements and Health, 2012, 1(1):33-35 http://qikan.cqvip.com/Qikan/Article/Detail?id=40707429
[9]杜小平, 康靖全, 吕金印.镉低积累青菜品种筛选及硫对镉胁迫下青菜镉含量和品质影响[J].农业环境科学学报, 2018, 37(8):1592-1601 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201808006
DU X P, KANG J Q, LYU J Y. Selection for low-Cd-accumulating cultivars of pakchoi (Brassica chinensis L.), effects of sulfur on Cd content, and quality characters under Cd stress[J]. Journal of Agro-Environment Science, 2018, 37(8):1592-1601 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201808006
[10]刘桂华, 胡岗, 秦松, 等.贵州典型酸性黄壤中3种叶菜类蔬菜对Cd累积特性及低累积品种筛选[J].安全与环境学报, 2018, 18(1):396-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201801074
LIU G H, HU G, QIN S, et al. On the Cd accumulation risk features in the 3 leaf vegetables in the typical acid brown soil of Guizhou and the corresponding choice for better lower accumulated cultivars instead[J]. Journal of Safety and Environment, 2018, 18(1):396-401 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aqyhjxb201801074
[11]冯艳红, 王国庆, 张亚, 等.土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究[J].地球与环境, 2019, 47(5):653-661 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201905010
FENG Y H, WANG G Q, ZHANG Y, et al. Study on bioaccumulation of cadmium in soil-vegetable system and pollution threshold in soil[J]. Earth and Environment, 2019, 47(5):653-661 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdqhx201905010
[12]陈慧茹.镉在水稻亚种间的吸收转运和积累差异及其低积累突变种质的创建[D].北京: 中国科学技术大学, 2019
CHEN H R. Absorption, transport, and accumulation of cadmium in rice cultivars and identification of low-cadmium rice mutant[D]. Beijing: University of Science and Technology of China, 2019
[13]赵园园.硒对镉胁迫下油菜生长及根部镉响应的调控[D].武汉: 华中农业大学, 2019
ZHAO Y Y. Selenium regulated plant growth and cadmium response in root of rape under cadmium stress[D]. Wuhan: Huazhong Agricultural University, 2019
[14]王小蒙, 郑向群, 丁永祯, 等.不同土壤下苋菜镉吸收规律及其阈值研究[J].环境科学与技术, 2016, 39(10):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201610001
WANG X M, ZHENG X Q, DING Y Z, et al. Absorption rules and threshold value of amaranth cadmium under different soil types[J]. Environmental Science & Technology, 2016, 39(10):1-8 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201610001
[15]赵亚玲.土壤蔬菜中铅镉污染评价与富集特征研究[J].蔬菜, 2018, (12):60-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sc201812016
ZHAO Y L. Evaluation and enrichment of lead and cadmium pollution in soil vegetables[J]. Vegetables, 2018, (12):60-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sc201812016
[16]陈小华, 沈根祥, 白玉杰, 等.不同作物对土壤中Cd的富集特征及低累积品种筛选[J].环境科学, 2019, 40(10):4647-4653 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201910040
CHEN X H, SHEN G X, BAI Y J, et al. Accumulation of Cd in different crops and screening of low-Cd accumulation cultivars[J]. Environmental Science, 2019, 40(10):4647-4653 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201910040
[17]关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986
GUAN S Y. Soil Enzymes and Their Research Methods[M]. Beijing:Agricultural Press, 1986
[18]徐冬梅.土壤酸性磷酸酶性质及汞、铜、锌对其影响的机理研究[D].杭州: 浙江大学, 2003
XU D M. Acid phosphatase and its interaction with heavy metals, Hg(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ)[D]. Hangzhou: Zhejiang University, 2003
[19]曾妍骅, 梁宁, 周龙, 等.镉对土壤脲酶的毒理作用研究[J].农家参谋, 2019, (10):22 http://www.cnki.com.cn/Article/CJFDTotal-NJCM201910022.htm
ZENG Y H, LIANG N, ZHOU L, et al. Study on the toxicological effects of cadmium on soil urease[J]. Farmhouse Staff, 2019, (10):22 http://www.cnki.com.cn/Article/CJFDTotal-NJCM201910022.htm
[20]杨志新.重金属复合污染对土壤酶活性及油菜的影响[D].保定: 河北农业大学, 1998
YANG Z X. Effects of heavy metal compound pollution on soil enzyme activity and rape[D]. Baoding: Agricultural University of Hebei, 1998
[21]安凤秋.外源重金属铅和镉对土壤生物活性及微生物群落多样性的影响研究[D].杨凌: 西北农林科技大学, 2018
AN F Q. Influence on soil biological activity and bacteria community diversity by exogenous lead and cadmium[D]. Yangling: Northwest A & F University, 2018
[22]杨廷章, 李龙飞, 谭添, 等.重金属Cd、Pb离子对土壤酶活性的抑制影响[J].吉林农业, 2019, (16):70-71 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlny201916063
YANG T Z, LI L F, TAN T, et al. Inhibition of soil enzyme activity by heavy metals Cd and Pb ion[J]. Jilin Agriculture, 2019(16):70-71 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlny201916063
[23]陈彦芳, 曹柳, 马建华, 等.土壤重金属复合污染钝化修复对酶活性的影响[J].河南大学学报:自然科学版, 2020, 50(1):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndxxbzr202001001
CHEN Y F, CAO L, MA J H, et al. Effect of in-situ remediation of soil contaminated with multiple heavy metals on enzyme activities[J]. Journal of Henan University:Natural Science, 2020, 50(1):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndxxbzr202001001
[24]温馨, 陈效民, 郭碧林, 等.生物质炭添加对红壤性水稻土重金属有效性及土壤质量的影响[J/OL].生态学杂志, 2020, 39(4): 1183-1190
WEN X, CHEN X M, GUO B L, et al. Effects of biochar addition on the availability of heavy metals and soil quality in red paddy soil[J/OL]. Chinese Journal of Ecology, 2020, 39(4): 1183-1190
[25]PARVEEN R, ABBASI A M, SHAHEEN N, et al. Accumulation of selected metals in the fruits of medicinal plants grown in urban environment of Islamabad, Pakistan[J]. Arabian Journal of Chemistry, 2020, 13(1):308-317 doi: 10.1016/j.arabjc.2017.04.010
[26]刘香香.广东省4种蔬菜中镉与土壤镉污染相关性及阈值研究[D].武汉: 华中农业大学, 2012
LIU X X. Study on the relationship between soil Cd pollution and Cd contents in four kinds of vegetables and pollution threshold of soil in Guangdong Province[D]. Wuhan: Huazhong Agricultural University, 2012
[27]文典.珠三角地区土壤中5种重金属在叶菜类蔬菜中的累积特征及其环境安全临界值[D].武汉: 华中农业大学, 2012
WEN D. Accumulation characteristics of five heavy metals in leafy vegetables and their environmental critical values in the Pearl River Delta[D]. Wuhan: Huazhong Agricultural University, 2012
[28]刘青栋.镉在土壤-辣椒体系迁移富集及其耦合关系探究[D].贵阳: 贵州大学, 2019
LIU Q D. Study on migration and enrichment of cadmium in soil-pepper system and its coupling relationship[D]. Guiyang: Guizhou University, 2019
[29]郑宏艳, 刘书田, 米长虹, 等.土壤-水稻籽粒系统镉富集主要影响因素统计分析[J].农业环境科学学报, 2015, 34(10):1880-1888 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201510009
ZHENG H Y, LIU S T, MI C H, et al. Statistical analysis of factors affecting Cd bioaccumulation in soil-rice grain system[J]. Journal of Agro-Environment Science, 2015, 34(10):1880-1888 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201510009
[30]周利军, 武琳, 林小兵, 等.土壤调理剂对镉污染稻田修复效果[J].环境科学, 2019, 40(11):5098-5106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201911042
ZHOU L J, WU L, LIN X B, et al. Remediation of cadmium contaminated paddy fields using soil conditioners[J]. Environmental Science, 2019, 40(11):5098-5106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201911042
[31]YANG J X, GUO H T, MA Y B, et al. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences, 2010, 22(8):1246-1252 doi: 10.1016/S1001-0742(09)60245-X
[32]LIU J G, QIAN M, CAI G L, et al. Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake[J]. Environmental Geochemistry and Health, 2007, 29(3):189-195 doi: 10.1007/s10653-006-9063-z

相关话题/土壤 蔬菜 污染 农业 环境科学