罗鸣1,
徐明1,,,
刘雁南1,
陈保青2,,,
赵文1,
黄波1
1.农业农村部国际交流服务中心 北京 100125
2.中国农业科学院农业环境与可持续发展研究所 北京 100081
基金项目:农业农村部农业国际交流与合作专项资助
详细信息
作者简介:刘海涛, 研究方向为生态农业、农业文化遗产、农业国际合作。E-mail:liu_haitao@agri.gov.cn
通讯作者:徐明, 研究方向为农业国际合作、农业文化遗产, E-mail:xuming@agri.gov.cn
陈保青, 研究方向为旱地土壤生态, E-mail:chenbaoqing01@caas.cn
中图分类号:K917计量
文章访问数:217
HTML全文浏览量:7
PDF下载量:130
被引次数:0
出版历程
收稿日期:2020-02-25
录用日期:2020-04-21
刊出日期:2020-09-01
Gini coefficient-based spatial distribution features of Globally Important Agricultural Heritage Systems (GIAHS) and their influence factors
LIU Haitao1,,LUO Ming1,
XU Ming1,,,
LIU Yannan1,
CHEN Baoqing2,,,
ZHAO Wen1,
HUANG Bo1
1. Center of International Cooperation Service, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Funds:The study was supported by the International Cooperation Project of Ministry of Agriculture and Rural Affairs of the People's Republic of China
More Information
Corresponding author:XU Ming, E-mail: xuming@agri.gov.cn;CHEN Baoqing, E-mail:chenbaoqing01@caas.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:全球重要农业文化遗产(GIAHS)由联合国粮农组织发起并负责认定。截至2020年3月底,全球共有22个国家的59个项目被列入GIAHS名录。但是目前尚缺乏对GIAHS全球空间分布特征及影响因素的研究。为了更全面掌握GIAHS资源地理变迁与区域差异,为全球农耕文明挖掘保护提供参考,本文以截至2020年3月被列入GIAHS名录的59项遗产为基础,利用基尼系数方法,从东西半球与南北半球以及洲际与国家角度,分析了被列入GIAHS保护名录的59个项目的全球空间分布特征及其主要影响因素。结果表明:GIAHS在五大洲、不同纬度带、不同经度区间、现有分布国家之间的基尼系数分别为0.63、0.68、0.76和0.83,分布均匀度分别为0.37、0.32、0.24和0.17,表明在全球五大洲、不同纬度带、不同经度区间和现有分布国家的集中分布程度均较强、分布均匀度均较低;GIAHS在亚洲的分布最多,其次是非洲和欧洲,美洲数量相对较少。目前GIAHS主要分布在北半球,特别是30°~60°N之间区域;东西半球相比,主要集中在东半球,尤其是100°~160°E之间;GIAHS在现有分布国家中的集中程度非常高,中国、日本、韩国3国的GIAHS数量超过总数的一半。影响GIAHS空间分布的主要因素包括气候与地理条件、农业起源中心、GIAHS影响力、国家发展理念及重视程度等。基于对GIAHS的全球空间分布及主要影响因素分析,本文提出加强对不同纬度带和不同气候带的普查力度、关注小岛屿国家农渔业系统的挖掘和加大对经济欠发达国家的支持力度等相关建议,以期为GIAHS发展提供参考。
关键词:全球重要农业文化遗产/
基尼系数/
空间分布/
影响因素/
联合国粮农组织
Abstract:Globally Important Agricultural Heritage Systems (GIAHS) is recognized by Food and Agriculture Organization of the United Nations (FAO). After nearly 20 years of development, 59 GIAHS exist across 22 countries. For a long time, researchers in different fields have provided technical support for the conservation and development of GIAHS, focusing on concept and connotation, structure and function, traditional ecological wisdom, knowledge and technology systems, tourism development, ecological compensation mechanism, and more. However, the global spatial distribution features and influencing factors of GIAHS remain understudied. Studying the spatial distribution of GIAHS and its influencing factors will help to fully grasp the geographic changes and regional differences of GIAHS resources, and provide important references for the recognition and conservation of global agricultural civilization. Based on the 59 projects listed on the GIAHS by March 2020, this study used the Gini coefficient method to analyze the global spatial distribution features of GIAHS from the perspective of the Eastern and Western Hemispheres, the Northern and Southern Hemispheres, and continental and national perspectives. The Gini coefficients of GIAHS are 0.63, 0.68, 0.76, and 0.83, respectively, and the uniformity coefficients of GIAHS are 0.37, 0.32, 0.24, and 0.17, respectively, in five continents, different latitudes, different longitudes, and recognized countries. The results show that there is a strong concentration and low uniformity of GIAHS across the measured regional scales. Asia has the highest GIAHS distribution, followed by Africa and Europe, while relatively few exist in the Americas. GIAHS are mainly distributed in the Northern Hemisphere, especially between 30°-60°N. They are also concentrated in the Eastern Hemisphere, especially between 100°-160°E. The concentration of GIAHS in the recognized countries is very high, and the number of GIAHS in China, Japan, and Korea exceeds half of the total. The distribution of GIAHS is influenced by climate conditions and geography, agricultural origination centers, influence of GIAHS and concept of national development, and more. The countries at the center of the agricultural origin account for the majority of GIAHS-recognized countries. GIAHS recognition potential is high in those countries with complex climates that are important to GIAHS. At the same time, the existing GIAHS have a very high degree of climate type concentration and a very low distribution uniformity, mainly concentrated in the temperate and tropical monsoon climates. This paper suggests that it is necessary to carry out a census in different latitudes and climatic zones to recognize agricultural and fishery systems in small island countries, and to increase support for economically underdeveloped countries. As a firm supporter and major contributor to GIAHS, China should make full use of its accumulated experience and international influence to promote the further optimization of GIAHS work in FAO.
Key words:Globally Important Agricultural Heritage Systems (GIAHS)/
Gini coefficient/
Spatial distribution/
Influence factors/
Food and Agriculture Organization of the United Nations (FAO)
HTML全文
图1全球重要农业文化遗产(GIAHS)全球地理分布
Figure1.Geographical distribution of Globally Important Agricultural Heritage Systems (GIAHS)
下载: 全尺寸图片幻灯片
图2全球重要农业文化遗产(GIAHS)与国家气候类型数量的关系
Figure2.Regression analysis on Globally Important Agricultural Heritage Systems (GIAHS) number and climate types in recognized countries
下载: 全尺寸图片幻灯片
图3全球重要农业文化遗产(GIAHS)数量和拥有国家数量的动态变化
Figure3.Dynamic graph of the number of Globally Important Agricultural Heritage Systems (GIAHS) and the number of countries with GIAHS
下载: 全尺寸图片幻灯片
表1全球重要农业文化遗产(GIAHS)在南、北半球及东、西半球的分布情况
Table1.Distribution of Globally Important Agricultural Heritage Systems (GIAHS) in the Northern and Southern Hemisphere, the Eastern and Western Hemispheres
半球 Hemisphere | 区域 Region | GIAHS数量 GIAHS number | 占比 Percentage (%) |
北半球 Northern Hemisphere | 60°~90°N (高纬度气候带High latitude climate zone) | 0 | 0 |
30°~60°N (中纬度气候带Mid-latitude climate zone) | 36 | 61 | |
0°~30°N (低纬度气候带Low latitude climate zone) | 17 | 29 | |
合计Total | 53 | ||
南半球 Southern Hemisphere | 0°~30°S (低纬度气候带Low latitude climate zone) | 5 | 8 |
30°~60°S (中纬度气候带Mid-latitude climate zone) | 1 | 2 | |
60°~90°S (高纬度气候带High latitude climate zone) | 0 | 0 | |
合计Total | 6 | ||
东半球 Eastern Hemisphere | 20°~40°E | 13 | 22 |
40°~100°E | 11 | 19 | |
100°~160°E | 31 | 52 | |
合计Total | 55 | ||
西半球 Western Hemisphere | 160°~140°W | 0 | 0 |
140°~80°W | 1 | 2 | |
80°~20°W | 3 | 5 | |
合计Total | 4 |
下载: 导出CSV
表2全球重要农业文化遗产(GIAHS)区域分布和气候类型分类表
Table2.Region and climate type classification of Globally Important Agricultural Heritage Systems (GIAHS)
区域 Region | 国家 Country | 系统名称 Title of GIAHS | 气候类型 Climate type |
亚太地区(40) Asia and Pacific (40) | 中国(15) China (15) | 浙江青田稻鱼共生系统 Qingtian Rice Fish Culture System, Zhejiang | 亚热带季风气候 Subtropical monsoon climate |
江西万年稻作文化系统 Wannian Traditional Rice Culture System, Jiangxi | 亚热带季风气候 Subtropical monsoon climate | ||
云南红河哈尼稻作梯田系统 Hani Rice Terraces System, Yunnan | 亚热带季风气候 Subtropical monsoon climate | ||
贵州从江侗乡稻鱼鸭系统 Congjiang Dong’s Rice Fish Duck System, Guizhou | 亚热带季风气候 Subtropical monsoon climate | ||
云南普洱古茶园与茶文化系统 Pu’er Traditional Tea Agrosystem, Yunnan | 亚热带季风气候 Subtropical monsoon climate | ||
内蒙古敖汉旱作农业系统 Aohan Dryland Farming System, Inner Mongolia | 温带大陆性气候 Temperate continental climate | ||
浙江绍兴会稽山古香榧群 Kuaijishan Ancient Chinese Torreya, Zhejiang | 亚热带季风气候 Subtropical monsoon climate | ||
河北宣化城市传统葡萄园 Xuanhua Grape Garden, Hebei | 温带大陆气候 Temperate continental climate | ||
陕西佳县古枣园 Jiaxian Traditional Chinese Date Gardens, Shaanxi | 温带大陆气候 Temperate continental climate | ||
江苏兴化垛田传统农业文化系统 Xinghua Duotian Agrosystem, Jiangsu | 亚热带季风气候 Subtropical monsoon climate | ||
福建福州茉莉花与茶文化系统 Fuzhou Jasmine and Tea Culture System, Fujian | 亚热带季风气候 Subtropical monsoon climate | ||
甘肃迭部扎尕那农林牧复合系统 Diebu Zhagana Agriculture-Forestry-Animal Husbandry Composite System, Gansu | 温带季风气候、高原山地气候 Temperate monsoon climate, Plateau climate | ||
浙江湖州桑基鱼塘系统 Huzhou Mulberry-dyke & Fish-pond System, Zhejiang | 亚热带季风气候 Subtropical monsoon climate | ||
山东夏津古桑树群 Xiajin Ancient Mulberry Grove System, Shandong | 温带季风气候 Temperate monsoon climate | ||
中国南方山地稻作梯田系统 Rice Terraces System in Southern Mountainous and Hilly Areas, China | 亚热带季风气候 Subtropical monsoon climate | ||
日本(11) Japan (11) | 能登半岛山地与沿海乡村景观 Noto’s Satoyama and Satoumi | 温带季风气候 Temperate monsoon climate | |
佐渡岛稻田-朱鹮共生系统 Sado’s Satoyama in Harmony with Japanese Crested Ibis | 温带季风气候 Temperate monsoon climate | ||
熊本县阿苏可持续草地农业系统 Managing Aso Grasslands for Sustainable Agriculture | 温带季风气候 Temperate monsoon climate | ||
静冈传统茶-草复合系统 Traditional Tea-grass Integrated System in Shizuoka | 温带季风气候 Temperate monsoon climate | ||
大分国东半岛林-农-渔复合系统 Kunisaki Peninsula Usa Integrated Forestry, Agriculture and Fisheries System | 温带季风气候 Temperate monsoon climate | ||
岐阜长良川流域渔业系统 Ayu of the Nagara River System | 温带季风气候 Temperate monsoon climate | ||
和歌山青梅种植系统 Minabe-Tanabe Ume System | 温带季风气候 Temperate monsoon climate | ||
宫崎山地农林复合系统 Takachihogo-Shiibayama Mountainous Agriculture and Forestry System | 温带季风气候 Temperate monsoon climate | ||
日本大崎可持续稻田水管理系统 Osaki K?do’s Traditional Water Management System for Sustainable Paddy Agriculture | 亚热带季风气候 Subtropical monsoon climate | ||
西原陡坡土地农业 Nishi-Awa Steep Slope Land Agriculture System | 温带季风气候 Temperate monsoon climate | ||
静冈传统芥末种植 Traditional Wasabi Cultivation in Shizuoka | 温带季风气候 Temperate monsoon climate | ||
亚太地区(40) Asia and Pacific (40) | 韩国(4) Korea (4) | 青山岛板石梯田农作系统 Traditional Gudeuljang Irrigated Rice Terraces in Cheongsando | 温带季风气候 Temperate monsoon climate |
济州岛石墙农业系统 JejuBatdam Agricultural System | 温带海洋性气候 Temperate oceanic climate | ||
花开传统河东茶农业系统 Traditional Hadong Tea Agrosystem in Hwagae-myeon | 温带海洋性气候 Temperate oceanic climate | ||
传统人参种植系统 Geumsan traditional Ginseng Agricultural System | 温带季风气候 Temperate oceanic climate | ||
印度(3) India (3) | 藏红花文化系统 Saffron Heritage of Kashmir | 高原山地气候 Plateau climate | |
科拉普特农业系统 Koraput Traditional Agriculture | 热带季风气候 Tropical monsoon climate | ||
库塔纳德海平面下农耕文化系统 Kuttanad Below Sea Level Farming System | 热带季风气候 Tropical monsoon climate | ||
伊朗(3) Iran (3) | 喀山坎儿井灌溉系统 Qanat Irrigated Agricultural Heritage Systems, Kashan | 沙漠和半沙漠性气候 Arid and semiarid climate | |
Jowzan山谷葡萄生产系统 Grape Production System in Jowzan Valley | 地中海型气候 Mediterranean climate | ||
戈纳巴德坎儿井-藏红花种植系统 Qanat-based Saffron Farming System in Gonabad | 沙漠和半沙漠性气候 Arid and semiarid climate | ||
孟加拉国 Bangladesh | 浮田农作系统 Floating Garden Agricultural Practices | 亚热带季风气候 Subtropical monsoon climate | |
菲律宾 Philippe | 伊富高稻作梯田系统 Ifugao Rice Terraces | 季风型热带雨林气候 Monsoon rainforest climate | |
斯里兰卡 Sri Lanka | 斯里兰卡干旱区阶梯式蓄水灌溉系统 Cascaded Tank-Village System (CTVS) in the Dry Zone of Sri Lanka | 热带季风气候 Tropical monsoon climate | |
阿联酋 UAE | 艾尔与里瓦绿洲椰枣种植系统 Al Ain and Liwa Historical Date Palm Oases | 热带沙漠气候 Tropical desert climate | |
非洲(8) Africa (8) | 突尼斯 Tunisia | 加法萨绿洲农业系统 Gafsa Oases (Oases of the Maghreb) | 热带沙漠气候 Tropical desert climate |
肯尼亚 Kenya | 马赛草原游牧系统 Oldonyonokie Maasai Pastoralist Heritage | 热带草原气候 Savannah climate | |
摩洛哥(2) Morocco (2) | 阿特拉斯山脉绿洲农业系统 Oases System in Atlas Mountains (Oases of the Maghreb) | 热带沙漠气候 Tropical desert climate | |
坚果农牧系统 Argan-based Agro-sylvo-pastoral System within the Area of Ait Souab-Ait and Mansour | 热带沙漠气候 Tropical desert climate | ||
阿尔及利亚 Algeria | 埃尔韦德绿洲农业系统 Ghout System (Oases of the Maghreb) | 热带沙漠气候 Tropical desert climate | |
埃及 Egypt | 锡瓦绿洲椰枣生产系统 Dates production System in Siwa Oasis | 热带沙漠气候 Tropical desert climate | |
坦桑尼亚(2) Tanzania (2) | 马赛游牧系统 Engaresero Maasai Pastoralist Heritage Area | 热带草原气候 Savannah climate | |
基哈巴农林复合系统 ShimbueJuuKihamba Agroforestry Heritage Site | 热带草原气候 Savannah climate | ||
欧洲(7) Europe (7) | 西班牙(4) Spain (4) | 阿尼亚纳海盐生产系统 Agricultural System of Valle Salado de A?ana | 地中海型气候、温带海洋性气候 Mediterranean climate, temperate oceanic climate |
拉阿哈基亚葡萄干生产系统 Malaga Raisin Production System in La Axarquía | 地中海型气候 Mediterranean climate | ||
西班牙 Territorio Sénia 古橄榄树农业系统 Agricultural System Ancient Olive Trees Territorio Sénia | 地中海型气候 Mediterranean climate | ||
巴伦西亚花园古灌溉系统 Historical Irrigation System at l'Horta de València | 地中海型气候 Mediterranean climate | ||
葡萄牙 Portugal | 巴罗索农林牧系统 Barroso Agro-Sylvo-Pastral System | 温带海洋性气候 Temperate oceanic climate | |
意大利(2) Italy (2) | 翁布里亚橄榄树系统 Olive Groves of the Slopes between Assisi and Spoleto | 地中海型气候 Mediterranean climate | |
苏瓦韦传统葡萄园 Soave Traditional Vineyards | 地中海型气候 Mediterranean climate | ||
南美洲(3) South America (3) | 巴西 Brazil | 埃斯皮尼亚山南部传统农业系统 Traditional Agricultural System in the Southern Espinha?o Range, Minas Gerais | 高原山地气候 Plateau climate |
秘鲁 Peru | 安第斯高原农业系统 Andean Agriculture | 高原山地气候 Plateau climate | |
智利 Chile | 智鲁岛屿农业系统 Chiloé Agriculture | 温带海洋性气候 Temperate oceanic climate | |
北美洲(1) North America (1) | 墨西哥 Mexico | 墨西哥城浮田系统 Chinampa system in Mexico City | 亚热带季风气候 Subtropical monsoon climate |
下载: 导出CSV
参考文献
[1] | KANNAN K, TANABE S, GIESY J P, et al. Organochlorine pesticides and polychlorinated biphenyls in foodstuffs from Asian and oceanic countries[M]//WARE G W. Reviews of Environmental Contamination and Toxicology. New York: Springer, 1997: 1-55 |
[2] | TILMAN D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient practices[J]. Proceedings of the National Academy of Sci ences of the United States of America, 1999, 96(11):5995-6000 |
[3] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046 |
[4] | GILL H K, GARG H. Pesticides: Environmental impacts and management strategies[M]//LARRAMENDY M L, SOLONESKI S. Pesticides-Toxic Aspects. Rijeka: InTech, 2014: 187-230 |
[5] | LI W H. Agro-Ecological Farming Systems in China[M]. New York:Parthenon Publishing Group, 2001 |
[6] | 李文华.生态农业——中国可持续农业的理论与实践[M].北京:化学工业出版社, 2003 LI W H. Ecological Agriculture — The Theory and Practice of Sustainable Agriculture in China[M]. Beijing:Chemical Industry Press, 2003 |
[7] | 农业农村部国际合作司.促进农耕文化交流互鉴——"南南合作"框架下中国对全球重要农业文化遗产保护的贡献[J].中国投资, 2018, (17):42-46 Department of International Cooperation, Ministry of Agriculture and Rural Affairs, People's Republic of China. Promoting exchanges of farming cultures and enabling rural development in diverse context — China's contribution to GIAHS conservation under the South-South Cooperation framework[J]. China Investment, 2018, (17):42-46 |
[8] | 李文华.中国生态农业的回顾与展望[J].农学学报, 2018, 8(1):145-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802319573 LI W H. Review and perspectives of China's ecological agriculture[J]. Journal of Agriculture, 2018, 8(1):145-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0120180802319573 |
[9] | 廖丹凤.日本大分县全球重要农业文化遗产保护与发展经验及其启示[J].农学学报, 2019, 9(1):62-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncxkkj201901013 LIAO D F. Experience and enlightenment of the protection and development of globally important agricultural heritage systems:A case of Oita[J]. Journal of Agriculture, 2019, 9(1):62-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncxkkj201901013 |
[10] | 闵庆文.全球重要农业文化遗产——一种新的世界遗产类型[J].资源科学, 2006, 28(4):206-208 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200604038 MIN Q W. GIAHS:A new kind of world heritage[J]. Resources Science, 2006, 28(4):206-208 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200604038 |
[11] | 刘海涛, 徐明.中日韩全球重要农业文化遗产管理体系比较及对中国的启示[J].世界农业, 2019, (5):73-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shijny201905012 LIU H T, XU M. Comparison and experience of management systems of globally important agricultural heritage systems between China, Japan and Korea[J]. World Agriculture, 2019, (5):73-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shijny201905012 |
[12] | 徐明, 宋雨星, 熊哲, 等.中国对世界农耕文明保护和农业可持续发展的特殊贡献——基于中国-FAO南南合作框架下的全球重要农业文化遗产项目总结[J].世界农业, 2019, (12):84-88 XU M, SONG Y X, XIONG Z, et al. China's contribution to agricultural civilization conservation and sustainable agricultural development:Based on the review of the project of globally important agricultural heritage systems under the framework of China-FAO "South-South Cooperation"[J]. World Agriculture, 2019, (12):84-88 |
[13] | GIAHS Secretariat. Designated sites around the world[EB/OL]. FAO.[2020-03-23]. http://www.fao.org/giahs/giahsaroundtheworld/designated-sites/en/ |
[14] | 闵庆文, 孙业红.农业文化遗产的概念、特点与保护要求[J].资源科学, 2009, 31(6):914-918 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200906003 MIN Q W, SUN Y H. The concept, characteristics and conservation requirements of agro-cultural heritage[J]. Resources Science, 2009, 31(6):914-918 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200906003 |
[15] | 闵庆文, 何露, 孙业红, 等.中国GIAHS保护试点:价值、问题与对策[J].中国生态农业学报, 2012, 20(6):668-673 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012602&flag=1 MIN Q W, HE L, SUN Y H, et al. On the value, conservation and sustainable development of GIAHS pilot sites in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6):668-673 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012602&flag=1 |
[16] | XIE J, HU L L, TANG J J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):E1381-E1387 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2472bc422d2a875a037bfb7ee8ffb819 |
[17] | REN W Z, HU LL, GUO L, et al. Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3):E546-E554 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4b0968de14be9b4abc248e1dbce20846 |
[18] | 刘某承, 张丹, 李文华.稻田养鱼与常规稻田耕作模式的综合效益比较研究——以浙江省青田县为例[J].中国生态农业学报, 2010, 18(1):164-169 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010131&flag=1 LIU M C, ZHANG D, LI W H. Evaluation of comprehensive benefit of rice-fish agriculture and rice monocropping — A case study of Qingtian County, Zhejiang Province[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):164-169 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010131&flag=1 |
[19] | 马艳芹, 钱晨晨, 孙丹平, 等.崇义客家梯田传统农耕知识、技术调查与研究[J].中国农学通报, 2017, 33(8):154-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201708025 MA Y Q, QIAN C C, SUN D P, et al. Investigation and research on traditional farming knowledge and technology of Hakka terrace in Chongyi[J]. Chinese Agricultural Science Bulletin, 2017, 33(8):154-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201708025 |
[20] | 马楠, 闵庆文, 袁正.农业文化遗产中传统知识的概念与保护——以普洱古茶园与茶文化系统为例[J].中国生态农业学报, 2018, 26(5):771-779 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0515&flag=1 MA N, MIN Q W, YUAN Z. Concept and protection of traditional knowledges in agricultural heritage system:A case study of Pu'er Traditional Tea Agrosystem[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):771-779 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0515&flag=1 |
[21] | 杨伦, 马楠, 王国萍, 等.农业文化遗产中的传统知识:内涵与基本类型[J].自然与文化遗产研究, 2019, 4(11):48-52 YANG L, MA N, WANG G P, et al. Traditional knowledge in agricultural heritage systems:Concept and basic types[J]. Study on Natural and Cultural Heritage, 2019, 4(11):48-52 |
[22] | 孙业红, 闵庆文, 成升魁, 等.农业文化遗产旅游资源开发与区域社会经济关系研究——以浙江青田"稻鱼共生"全球重要农业文化遗产为例[J].资源科学, 2006, 28(4):138-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200604027 SUN Y H, MIN Q W, CHENG S K, et al. Relationship between tourism resources development and regional social and economic development in agricultural heritage site — Taking "Traditional Rice-Fish Agriculture" of Qingtian county as an example[J]. Resources Science, 2006, 28(4):138-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200604027 |
[23] | 闵庆文, 孙业红, 成升魁, 等.全球重要农业文化遗产的旅游资源特征与开发[J].经济地理, 2007, 27(5):856-859 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl200705034 MIN Q W, SUN Y H, CHENG S K, et al. Primary study on the features and development of GIAHS's tourism resources[J]. Economic Geography, 2007, 27(5):856-859 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl200705034 |
[24] | 孙业红, 闵庆文, 成升魁, 等.农业文化遗产的旅游资源特征研究[J].旅游学刊, 2010, 25(10):57-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lyxk201010009 SUN Y H, MIN Q W, CHENG S K, et al. Study on the tourism resource characteristics of agricultural heritage[J]. Tourism Tribune, 2010, 25(10):57-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lyxk201010009 |
[25] | 唐晓云, 闵庆文, 何露.农业文化遗产地的旅游社会文化影响测量及调控研究——以广西桂林龙脊平安寨为例[J].中国生态农业学报, 2012, 20(6):710-716 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012609&flag=1 TANG X Y, MIN Q W, HE L. Measurement and regulation of socio-cultural impact of tourism in agro-cultural heritage site — A cause study of Longji Ping'anzhai Terrace in Guilin, Guangxi[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6):710-716 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012609&flag=1 |
[26] | 孙业红, 闵庆文, 成升魁. "稻鱼共生系统"全球重要农业文化遗产价值研究[J].中国生态农业学报, 2008, 16(4):991-994 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008438&flag=1 SUN Y H, MIN Q W, CHENG S K. Value of the GIAHS-China traditional rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2008, 16(4):991-994 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008438&flag=1 |
[27] | 张永勋, 何璐璐, 闵庆文.基于文献统计的国内农业文化遗产研究进展[J].资源科学, 2017, 39(2):175-187 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201702001 ZHANG Y X, HE L L, MIN Q W. Research progress of agricultural heritage in China based on literature statistics[J]. Resources Science, 2017, 39(2):175-187 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx201702001 |
[28] | 刘某承, 伦飞, 张灿强, 等.传统地区稻田生态补偿标准的确定——以云南哈尼梯田为例[J].中国生态农业学报, 2012, 20(6):703-709 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012608&flag=1 LIU M C, LUN F, ZHANG C Q, et al. Standards of payments for paddy ecosystem services:Using Hani Terrace as case study[J]. Chinese Journal of Eco-Agriculture, 2012, 20(6):703-709 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2012608&flag=1 |
[29] | 韩宗伟.中国农业文化遗产的空间分布特征及影响因素分析[J].中国农业资源与区划, 2017, 38(2):97-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201702014 HAN Z W. Geographical distribution and affecting factors of the important agricultural heritage systems in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(2):97-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyzyyqh201702014 |
[30] | 牟娅, 于婧.中国重要农业文化遗产空间分布特征研究[J].湖北农业科学, 2018, 57(19):103-107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnykx201819022 MOU Y, YU J. On the spatial distribution features of national important agricultural heritage systems[J]. Hubei Agricultural Sciences, 2018, 57(19):103-107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnykx201819022 |
[31] | 管新建, 黄安齐, 张文鸽, 等.基于基尼系数法的灌区农户间水权分配研究[J/OL].节水灌溉, 2020, http://kns.cnki.net/kcms/detail/42.1420.TV.20200214.1904.020.html GUAN X J, HUANG A Q, ZHANG W G, et al. Study on water right allocation between farmers in irrigation district based on Gini coefficient method[J]. Water Saving Irrigation, 2020, http://kns.cnki.net/kcms/detail/42.1420.TV.20200214.1904.020.html |
[32] | 崔卫华, 王之禹, 徐博.世界工业遗产的空间分布特征与影响因素[J].经济地理, 2017, 37(6):198-205 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl201706028 CUI W H, WANG Z Y, XU B. Spatial structure and determinants of world industrial heritages[J]. Economic Geography, 2017, 37(6):198-205 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jjdl201706028 |
[33] | 张文逸, 翁敏.基于基尼系数的青海省公路空间分布格局研究[J].地理空间信息, 2016, 14(2):94-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkjxx201602034 ZHANG W Y, WENG M. Spatial distribution pattern of highways in Qinghai Province based on Gini coefficient[J]. Geospatial Information, 2016, 14(2):94-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkjxx201602034 |
[34] | 詹姆斯·费尔格里夫.地理与世界霸权[M].杭州:浙江人民出版社, 2016 JAMES F. Geography and World Power[M]. Hangzhou:Zhejiang People's Publishing House, 2016 |
[35] | 骆世明.传统农业精华与现代生态农业[J].地理研究, 2007, 26(3):609-615 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200703022 LUO S M. To discover the secret of traditional agriculture and serve the modern ecoagriculture[J]. Geographical Research, 2007, 26(3):609-615 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200703022 |
[36] | 韩茂莉.世界农业起源地的地理基础与中国的贡献[J].历史地理研究, 2019, 39(1):114-124 HAN M L. Geographical fundamentals of worldwide origination of agriculture and contributions from China[J]. The Chinese Historical Geography, 2019, 39(1):114-124 |
[37] | 闵庆文, 赵立军, 叶明儿.农业文化遗产保护的罗马会议及其主要成果[J].地理研究, 2007, 26(1):211-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200701027 MIN Q W, ZHAO L J, YE M E. Rome conference on the conservation of agricultural heritage and its main achievements[J]. Geograp Research, 2007, 26(1):211-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200701027 |
[38] | 尹国蔚.世界遗产空间分布的统计分析[J].地理与地理信息科学, 2009, 25(4):104-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj200904025 YIN G W. Statistical analysis on geographical distribution of world heritage[J]. Geography and Geo-Information Science, 2009, 25(4):104-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj200904025 |