马林1,,,
张建杰3,
马文奇3,
张福锁4
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.河北农业大学资源与环境科学学院 保定 071001
4.中国农业大学国家绿色农业发展研究院 北京 100193
基金项目: 国家自然科学基金项目31972517
中国工程院咨询研究项目2019-XZ-25
详细信息
作者简介:金欣鹏, 研究方向为农业生态学。E-mail:jinxinpeng19@mails.ucas.ac.cn
通讯作者:马林, 研究方向为农业生态学。E-mail:malin1979@sjziam.ac.cn
中图分类号:S19;S158.5计量
文章访问数:315
HTML全文浏览量:2
PDF下载量:258
被引次数:0
出版历程
收稿日期:2020-04-01
录用日期:2020-06-10
刊出日期:2020-08-01
Systematic research and quantitative approach for assessing agricultural green development
JIN Xinpeng1, 2,,MA Lin1,,,
ZHANG Jianjie3,
MA Wenqi3,
ZHANG Fusuo4
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071001, China
4. National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
Funds: the National Natural Science Foundation of China31972517
the Consulting Research Project of Chinese Academy of Engineering2019-XZ-25
More Information
Corresponding author:E-mail: malin1979@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农业绿色发展研究是融合多学科知识,以食物系统为研究对象,重点剖析系统内不同单元间关联和互馈关系,进而阐明粮食安全、国民健康、资源节约、环境保护等目标的协调机制,探索全产业链技术途径,并致力于协同实现农业“绿色”和“发展”的科学。传统研究方法往往忽视对农业绿色发展的系统思考和定量分析,无法统筹农业绿色发展的各环节和协调多类目标的实现。在本研究中,我们首先基于系统研究的思路,明确了“土壤-作物生产-畜牧业生产-食品加工-家庭消费—环境”整个食物系统是农业绿色发展系统研究边界;其次,结合农业绿色发展全链条和多尺度特性,提出并论述了“自上而下”和“自下而上”的定量研究思路;随后,以上述两方面研究思考为基础,构建了由1个核心模型[食物系统养分流动模型(NUFER)]、3个定量分析模块(水、大气和土地利用分析模块)和1个指标关联模块[耦合驱动力-压力-状态-影响-响应概念框架(DPSIR)、可持续发展指标体系(SDGs)和星球边界理论框架(PBs)]组成的农业绿色发展系统分析耦合模型(NUFER-AGD);最后,梳理了农业绿色发展定量研究的案例。案例研究通过多指标关联分析和指标评价,协同国家农业绿色发展的总体目标;在流域尺度以绿色环境与资源阈值为约束,定量设计农业绿色发展系统解决方案;系统分析全产业链农业绿色发展的技术实现路径。该研究不仅能为农业绿色发展理论和应用研究提供系统思路和定量方法,还可为国家农业绿色发展战略提供科学支撑。
关键词:农业绿色发展/
食物系统/
系统研究/
NUFER模型/
多指标关联分析
Abstract:Research on agricultural green development (AGD) is a scientific direction of integrating multi-disciplinary knowledge. It takes the food system as the research boundary, and focuses on analyzing the relationship between different sectors in the food system to achieve the targets of food security, human health, resource conservation and environmental protection. It also devotes attention to the coordination of "green" and "development" in agriculture production system. Previous methods often neglect systematically thinking and quantitatively analyzing of the AGD, and cannot coordinate multiple objectives of AGD. In this study, we firstly defined the research boundary of AGD, which considered "soil-crop production-animal production-food processing-household consumption-environmental impacts" systems; secondly, we developed the quantitative research approaches of "top-down" and "bottom-up", combining the whole food chain and multi-scale characters in AGD studies; thirdly, we developed the new modelling system for AGD (NUFER-AGD), including a core model (the food system nutrient flow model, NUFER), three quantitative analysis modules (water, atmosphere and land use modules) and one index module (linked to Driving force-Pressure-States-Impacts-Response, DPSIR; Sustainable Development Goals, SDGs; and Planet Boundaries, PBs); and last, we reviewed several case studies of quantitative research on AGD. Here, case studies were conducted by following 3 steps: (1) coordinating the overall goals AGDs at national level by nexus analysis approach and multiple indicators evaluation; (2) designing AGDs solutions quantitively by using green environment and resource limits as thresholds at the watershed scale; (3) analyzing the technical pathways of AGD systemically in the whole industrial chain. This research can not only provide systematic thinking and quantitative methods for the research of AGD, but also provide scientific support for the national strategy of AGD in China.
Key words:Agricultural green development/
Food system/
Systematic research/
NUFER model/
Nexus analysis of multiple indicators
HTML全文
图1农业绿色发展研究边界与系统研究思路
Figure1.Research boundary and systematical thinking of agricultural green development
AGD: agricultural green development; SDGs: sustainable development goals.
下载: 全尺寸图片幻灯片
图2农业绿色发展系统分析耦合模型系统(NUFER-AGD)
图中各模块的详细介绍见后文及其参考文献[3, 9-15]。
Figure2.Framework of modeling system for analyzing agricultural green development (NUFER-AGD)
The more details of modules in this figure are included in the text and the references [3, 9-15].
下载: 全尺寸图片幻灯片
图3农业绿色发展系统分析耦合模型与系统研究思路
图中3个支柱为生产资源、生态环境、社会经济, 4个界面为资源与生产之间、生产与消费之间、生产环节之间、生产消费与环境之间的界面, 5个利益主体为政府、农民、企业、经销商、消费者, 6个目标为社会、经济、生产、资源、生态、环境, 7个途径为政策、市场、服务、技术、产品、知识、工程; 10个过程为1)作物生产与资源的交换、2)畜牧生产的资源输入和粪尿的资源化利用、3)作物产品直接用作饲料、4)作物产品与食物和饲料加工的交换、5)动物产品与加工的交换、6)作物生产与家庭消费的交换、7)食品加工与家庭消费的交换、8)动物生产与家庭消费的交换、9)农产品加工和食物损失浪费和10)食物系统环境排放, 这些为马文奇等[5]提出的农业绿色发展的内涵。图中“自下而上”和“自上而下”的系统分析与定量研究步骤为: A, 时空数据分析与对标; B, 流域、县域指标和阈值; C, 多目标优化和迭代; D, 情景分析和反推分析; E, 生产技术和典型模式; F, 农业、生态和环境等政策; G, 县域流域指标验证; H, 凝练科技战略、创新重点。
Figure3.NUFER-AGD model and systematical research approach
The connotations of agriculture green development shown in the middle of the figure are raised by Ma, et al[5]. Three pillars are resource for production, ecological environment, socio-economic; Four interfaces are the interface between resource input and production, the interface between production and consumption, the interface between different production sectors, the interface between production-consumption and environment. Five stakeholders are government, farmers, companies, dealers, consumers. Six targets are social targets, economic targets, production targets, targets of resources utilization, ecological targets and environmental targets. Seven approaches are policy approaches, market approaches, service approaches, technical approaches, product approaches, knowledge approaches and engineer approaches. Ten processes are: 1) resource input and crop production; 2) feed input, livestock production and manure utilization; 3) crop product used as feed directly; 4) crop product processed for food or feed; 5) livestock product process; 6) crop production and human consumption; 7) food process and human consumption; 8) livestock production and human consumption; 9) product process, food loss and food waste; 10) environmental emission from food system. The steps of systematic analysis and quantitative research of "top-down" and "bottom-up" in the figure are A: analyze and compare spatial-temporal data; B: build index system at basin and county scale and define their thresholds; C: multi-objective optimization algorithm; D: scenario analysis and backcasting method; E: develop technologies of production and explore typical patterns; F: agricultural, ecological and environmental policies; G: verify model results and observed value; H: develop key technological strategies and innovation fields.
下载: 全尺寸图片幻灯片
表1不同尺度食物系统养分流动研究重点及其意义
Table1.Key research areas and significances of nutrient flows in food system at different scales
研究尺度 Study scale | 主要研究对象 Main study object | 模型主要功能 Main functions of the model | 重要应用领域 Key application fields |
全球/国家尺度 Global or country scale | 整个食物系统 Whole food system | 分析不同国家养分流动历史变化特征及影响因素, 阐明农牧生产技术改进、区域环境政策调控、膳食结构优化和全球贸易增加对食物系统的影响 Analyze historical changes and influencing factors of the nutrient flows in different countries, and illustrate the impacts of improvement of crop-livestock production technologies, diet structure and global trade on food system | 为国家农业绿色发展重大战略提供科学支撑 Provide scientific support for national agricultural green development |
区域/流域尺度 Regional or basin scale | 种养生产与环境系统的关系 Interaction between crop- livestock production and environmental system | 分析不同流域养分环境排放特征, 识别热点环境排放区和生态脆弱区 Analyze nutrient emission characters in different basins, identify emission hotspots and ecologically vulnerable areas | 为区域环境管理政策的制定提供科学依据 Provide scientific basis for reginal environmental management policies making |
农户/农场尺度 Household or farm scale | 种养生产系统 Crop-livestock system | 分析不同类型和管理模式的农田、畜禽养殖和农户(农场)的养分利用效率和环境排放特征及其影响因素 Analyze nutrient use efficiency, emission characters and influencing factors in households or farms production system, whose types or management patterns are different. | 为优化农户养分管理行为提供科学依据 Provide scientific basis for farms or households to improve nutrient management |
下载: 导出CSV
参考文献
[1] | 韩长赋.大力推进农业绿色发展[N].人民日报, 2017-05-09 http://d.wanfangdata.com.cn/periodical/shncjj201707001 HAN C F. Promote agricultural green development vigorously[N]. People' Daily, 2017-05-09 http://d.wanfangdata.com.cn/periodical/shncjj201707001 |
[2] | MA L, BAI Z H, MA W Q, et al. Exploring future food provision scenarios for China[J]. Environmental Science & Technology, 2019, 53(3):1385-1393 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8656ced5954ed21fd98d2d80e127dc36 |
[3] | ADRIAANSE A. Environmental Policy Performance Indicators:A study on the Development of Indicators for Environmental Policy in the Netherlands[M]. Uitgeverij:The Hague, 1993 |
[4] | BAI Z H, MA W Q, MA L, et al. China's livestock transition:Driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7):eaar8534 doi: 10.1126/sciadv.aar8534 |
[5] | 马文奇, 马林, 张建杰, 等.农业绿色发展理论框架和实现路径的思考[J].中国生态农业学报(中英文), 2020, DOI: 10.13930/j.cnki.cjea.200238 MA W Q, MA L, ZHANG J J, et al. Theoretical framework and realization pathway of agricultural green development[J]. Chinese Journal of Eco-Agriculture, 2020, DOI: 10.13930/j.cnki.cjea.200238 |
[6] | HIERONYMI A. Understanding systems science:A visual and integrative approach[J]. Systems Research and Behavioral Science, 2013, 30(5):580-595 doi: 10.1002/sres.2215 |
[7] | BERTALANFFY L V. General System Theory:Foundations, Development, Applications[M]. New York:Georges Braziller, 1969 |
[8] | 胡鞍钢, 周绍杰.绿色发展:功能界定、机制分析与发展战略[J].中国人口·资源与环境, 2014, 24(1):14-20 doi: 10.3969/j.issn.1002-2104.2014.01.003 HU A G, ZHOU S J. Green development:Functional definition, mechanism analysis and development strategy[J]. China Population, Resources and Environment, 2014, 24(1):14-20 doi: 10.3969/j.issn.1002-2104.2014.01.003 |
[9] | The United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development[EB/OL]. https://wedocs.unep.org/bitstream/handle/20.500.11822/11125/unep_swio_sm1_inf7_sdg.pdf?sequence=1.2015-10-21/2020-03-31 |
[10] | ROCKSTR?M J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263):472-475 doi: 10.1038/461472a |
[11] | MAYORGA E, SEITZINGER S P, HARRISON J A, et al. Global Nutrient Export from WaterSheds 2(NEWS 2):Model development and implementation[J]. Environmental Modelling & Software, 2010, 25(7):837-853 https://www.sciencedirect.com/science/article/abs/pii/S1364815210000186 |
[12] | STROKAL M, KROEZE C, WANG M R, et al. The MARINA model (Model to Assess River Inputs of Nutrients to seAs):Model description and results for China[J]. Science of the Total Environment, 2016, 562:869-888 doi: 10.1016/j.scitotenv.2016.04.071 |
[13] | JANSE J H. Model studies on the eutrophication of shallow lakes and ditches[D]. Wageningen: Wagningen University, 2005 https://agris.fao.org/agris-search/search.do?recordID=US201300101340 |
[14] | KLIMONT Z, BRINK C. Modeling of Emissions of Air Pollutants and Greenhouse Gases from Agricultural Sources in Europe[R].Laxenburg: International Institute for Applied Systems Analysis, 2004 http://www.iiasa.ac.at/publication/more_XQ-04-811.php |
[15] | HAVLíK P, SCHNEIDER U A, SCHMID E, et al. Global land-use implications of first and second generation biofuel targets[J]. Energy Policy, 2011, 39(10):5690-5702 doi: 10.1016/j.enpol.2010.03.030 |
[16] | MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4):1279-1289 doi: 10.2134/jeq2009.0403 |
[17] | 马林, 马文奇, 张福锁, 等.中国食物链养分流动与管理研究[J].中国生态农业学报, 2018, 26(10):1494-1500 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201810008 MA L, MA W Q, ZHANG F S, et al. Nutrient flow and management in the food chain in China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1494-1500 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201810008 |
[18] | ZHAO Z Q, BAI Z H, WEI S, et al. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses[J]. Nutrient Cycling in Agroecosystems, 2017, 108(2):231-244 doi: 10.1007/s10705-017-9856-8 |
[19] | WEI S, BAI Z H, QIN W, et al. Environmental, economic and social analysis of peri-urban pig production[J]. Journal of Cleaner Production, 2016, 129:596-607 doi: 10.1016/j.jclepro.2016.03.133 |
[20] | MA L, VELTHOF G L, WANG F H, et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005[J]. Science of the Total Environment, 2012, 434:51-61 doi: 10.1016/j.scitotenv.2012.03.028 |
[21] | BAI Z H, LU J, ZHAO H, et al. Designing vulnerable zones of nitrogen and phosphorus transfers to control water pollution in China[J]. Environmental Science & Technology, 2018, 52(16):8987-8988 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32adf90d8a56016c3388992291cc82cb |
[22] | WANG M R, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China:A county-scale analysis[J]. Environmental Science & Technology, 2018, 52(10):5782-5791 |
[23] | 马林, 卢洁, 赵浩, 等.中国硝酸盐脆弱区划分与面源污染阻控[J].农业环境科学学报, 2018, 37(11):2387-2391 doi: 10.11654/jaes.2018-1369 MA L, LU J, ZHAO H, et al. Nitrate vulnerable zones and strategies of non-point pollution mitigation in China[J]. Journal of Agro-Environment Science, 2018, 37(11):2387-2391 doi: 10.11654/jaes.2018-1369 |
[24] | BAI Z H, WINIWARTER W, KLIMONT Z, et al. Further improvement of air quality in China needs clear ammonia mitigation target[J]. Environmental Science & Technology, 2019, 53(18):10542-10544 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de4fb5b8999198478f642326c5b02339 |
[25] | BAI Z H, JIN S Q, WU Y, et al. China's pig relocation in balance[J]. Nature Sustainability, 2019, 2(10):888 doi: 10.1038/s41893-019-0391-2 |
[26] | ZHAO Z Q, QIN W, BAI Z H, et al. Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China[J]. Agricultural Water Management, 2019, 212:262-272 doi: 10.1016/j.agwat.2018.09.002 |
[27] | HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains:a meta-analysis and integrated assessment[J]. Global Change Biology, 2015, 21(3):1293-1312 http://www.ncbi.nlm.nih.gov/pubmed/25330119 |
[28] | BAI Z H, LEE M R F, MA L, et al. Global environmental costs of China's thirst for milk[J]. Global Change Biology, 2018, 24(5):2198-2211 doi: 10.1111/gcb.14047 |
[29] | STROKAL M, MA L, BAI Z H, et al. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions[J]. Environmental Research Letters, 2016, 11(2):024014 doi: 10.1088/1748-9326/11/2/024014 |
[30] | SCHEFFER M, JEPPESEN E. Regime shifts in shallow lakes[J]. Ecosystems, 2007, 10(1):1-3 doi: 10.1007/s10021-006-9002-y |
[31] | MCCRACKIN M L, HARRISON J A, COMPTON J E. Factors influencing export of dissolved inorganic nitrogen by major rivers:A new, seasonal, spatially explicit, global model[J]. Global Biogeochemical Cycles, 2014, 28(3):269-285 doi: 10.1002/2013GB004723 |
[32] | SEITZINGER S P, MAYORGA E, BOUWMAN A F, et al. Global river nutrient export:A scenario analysis of past and future trends[J]. Global Biogeochemical Cycles, 2010, 24(4):GB0A08 http://www.cabdirect.org/abstracts/20103245170.html |
[33] | WANG M R, KROEZE C, STROKAL M, et al. Global change can make coastal eutrophication control in China more difficult[J]. Earth's Future, 2020, 8(4):e2019EF001280 doi: 10.1029/2019EF001280 |
[34] | CHEN X J, STROKAL M, KROEZE C, et al. Seasonality in river export of nitrogen:a modelling approach for the Yangtze River[J]. Science of the Total Environment, 2019, 671:1282-1292 doi: 10.1016/j.scitotenv.2019.03.323 |
[35] | YANG J, STROKAL M, KROEZE C, et al. Nutrient losses to surface waters in Hai He basin:A case study of Guanting reservoir and Baiyangdian lake[J]. Agricultural Water Management, 2019, 213:62-75 doi: 10.1016/j.agwat.2018.09.022 |
[36] | JANSSEN A B G, DE JAGER V C L, JANSE J H, et al. Spatial identification of critical nutrient loads of large shallow lakes:Implications for Lake Taihu (China)[J]. Water Research, 2017, 119:276-287 https://www.sciencedirect.com/science/article/pii/S0043135417302890 |
[37] | KONG X, HE Q, YANG B, et al. Hydrological regulation drives regime shifts:evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake[J]. Global Change Biology, 2017, 23(2):737-754 http://www.ncbi.nlm.nih.gov/pubmed/27391103 |
[38] | LI X L, JANSSEN A B G, DE KLEIN J J M, et al. Modeling nutrients in Lake Dianchi (China) and its watershed[J]. Agricultural Water Management, 2019, 212:48-59 doi: 10.1016/j.agwat.2018.08.023 |
[39] | WANG M R, STROKAL M, BUREK P, et al. Excess nutrient loads to Lake Taihu:Opportunities for nutrient reduction[J]. Science of the Total Environment, 2019, 664:865-873 doi: 10.1016/j.scitotenv.2019.02.051 |
[40] | AMANN M, BERTOK I, BORKEN-KLEEFELD J, et al. Cost-effective control of air quality and greenhouse gases in Europe:Modeling and policy applications[J]. Environmental Modelling & Software, 2011, 26(12):1489-1501 http://www.sciencedirect.com/science/article/pii/S1364815211001733 |
[41] | AMANN M, BERTOK I, BORKEN J, et al. GAINS Asia:A Tool to Combat Air Pollution and Climate Change Simultaneously. Methodology[M]. Laxenburg:International Institute for Applied Systems Analysis, 2008 |
[42] | KIESEWETTER G, SCHOEPP W, HEYES C, et al. Modelling PM2.5 impact indicators in Europe:Health effects and legal compliance[J]. Environmental Modelling & Software, 2015, 74:201-211 |
[43] | HAVLíK P, VALIN H, MOSNIER A, et al. GLOBIOM Documentation[R]. Laxenburg: International Institute for Applied Systems Analysis, 2018 |
[44] | HAVLíK P, VALIN H, HERRERO M, et al. Climate change mitigation through livestock system transitions[J]. Proceedings of the National Academy of Sciences, 2014, 111(10):3709-3714 doi: 10.1073/pnas.1308044111 |
[45] | KRISTENSEN P. The DPSIR Framework, workshop on a comprehensive/detailed assessment of the vulnerability of water resources to environmental change in Africa using river basin approach[R]. Nairobi: UNEP Headquarters, 2004 |
[46] | VAN NOORDWIJK M, DUGUMA L A, DEWI S, et al. SDG synergy between agriculture and forestry in the food, energy, water and income nexus:reinventing agroforestry?[J]. Current Opinion in Environmental Sustainability, 2018, 34:33-42 doi: 10.1016/j.cosust.2018.09.003 |
[47] | LUCAS P L, WILTING H C, HOF A F, et al. Allocating planetary boundaries to large economies:Distributional consequences of alternative perspectives on distributive fairness[J]. Global Environmental Change, 2020, 60:102017 doi: 10.1016/j.gloenvcha.2019.102017 |
[48] | 张建杰, 崔石磊, 马林, 等.中国农业绿色发展指标体系的构建与例证[J].中国生态农业学报(中英文), 2020, DOI: 10.13930/j.cnki.cjea.200069 ZHANG J J, CUI S L, MA L, et al. Construction of a green development index system for agriculture in China and examples[J]. Chinese Journal of Eco-Agriculture, 2020, DOI: 10.13930/j.cnki.cjea.200069 |
[49] | BAI Z H, MA L, JIN S Q, et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China[J]. Environmental Science & Technology, 2016, 50(24):13409-13418 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=529ab8bfc04341fe9a7ea8c260600d8e |
[50] | BAI Z H, LI X X, LU J, et al. Livestock housing and manure storage need to be improved in China[J]. Environmental Science & Technology, 2017, 51(15):8212-8214 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b080fc2f0db53f5f5a443800300d10db |
[51] | 马林, 柏兆海, 王选, 等.中国农牧系统养分管理研究的意义与重点[J].中国农业科学, 2018, 51(3):406-416 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201803002 MA L, BAI Z H, WANG X, et al. Significance and research priority of nutrient management in soil-crop-animal production system in China[J]. Scientia Agricultura Sinica, 2018, 51(3):406-416 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201803002 |
[52] | LI A, STROKAL M, BAI Z H, et al. How to avoid coastal eutrophication-a back-casting study for the North China Plain[J]. Science of the Total Environment, 2019, 692:676-690 doi: 10.1016/j.scitotenv.2019.07.306 |
[53] | LU J, BAI Z H, CHADWICK D, et al. Mitigation options to reduce nitrogen losses to water from crop and livestock production in China[J]. Current Opinion in Environmental Sustainability, 2019, 40:95-107 doi: 10.1016/j.cosust.2019.10.002 |
[54] | ZHANG N N, BAI Z H, LUO J F, et al. Nutrient losses and greenhouse gas emissions from dairy production in China:Lessons learned from historical changes and regional differences[J]. Science of the Total Environment, 2017, 598:1095-1105 doi: 10.1016/j.scitotenv.2017.04.165 |
[55] | 张楠楠.中国奶牛养殖业氨排放特征及减排措施[D].北京: 中国科学院大学, 2019 ZHANG N N. Ammonia emission and mitigation from dairy production system in China[D]. Beijing: University of Chinese Academy of Sciences, 2019 |
[56] | ZHANG N N, BAI Z H, WINIWARTER W, et al. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China[J]. Environmental Science & Technology, 2019, 53(20):11840-11848 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa651aacb27fb96cdc83d179effcc3a6 |