删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北典型农田和畜禽场环境大气中活性氮化学组成和浓度变化特征

本站小编 Free考研考试/2022-01-01

吕雪梅1, 2,,
曾阳1,,,
田世丽2,
孙杰2,
张国忠2,
黄威2,
顾梦娜2,
许稳3,
刘学军3,
董红敏4,
马林5,
程一松5,
胡春胜5,
吴电明6,
潘月鹏2,,
1.山东大学青岛校区环境科学与工程学院 青岛 266237
2.中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室 北京 100029
3.中国农业大学资源与环境学院/教育部植物-土壤相互作用实验室 北京 100193
4.中国农业科学院农业环境与可持续发展研究所 北京 100081
5.中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
6.华东师范大学地理科学学院/教育部地理信息科学重点实验室 上海 200241
基金项目: 国家重点研发计划专项2017YFC0210103
大气重污染成因与治理攻关项目DQGG0208
国家自然科学基金项目41405144
2019年北京高等学校高水平人才交叉培养计划PXM2020_014207_000009

详细信息
作者简介:吕雪梅, 主要研究方向为大气氨排放。E-mail:201732588@mail.sdu.edu.cn
通讯作者:曾阳, 主要从事固体废弃物处置与氨气减排研究, E-mail:yangzeng@sdu.edu.cn
潘月鹏, 主要从事大气沉降定量与追踪溯源研究, E-mail:panyuepeng@mail.iap.ac.cn
中图分类号:X831

计量

文章访问数:333
HTML全文浏览量:4
PDF下载量:222
被引次数:0
出版历程

收稿日期:2019-12-14
录用日期:2020-02-04
刊出日期:2020-07-01

Atmospheric reactive nitrogen in typical croplands and intensive pig and poultry farms in the North China Plain

LYU Xuemei1, 2,,
ZENG Yang1,,,
TIAN Shili2,
SUN Jie2,
ZHANG Guozhong2,
HUANG Wei2,
GU Mengna2,
XU Wen3,
LIU Xuejun3,
DONG Hongmin4,
MA Lin5,
CHENG Yisong5,
HU Chunsheng5,
WU Dianming6,
PAN Yuepeng2,,
1. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
3. College of Agricultural Resources and Environmental Sciences, China Agricultural University/Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing 100193, China
4. Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
5. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
6. School of Geographical Sciences, East China Normal University/Key Laboratory of Geographic Information Sciences, Ministry of Education, Shanghai 200241, China
Funds: the National Key Research and Development Project of China2017YFC0210103
the National Research Program for Key Issues in Air Pollution Control of ChinaDQGG0208
the National Natural Science Foundation of China41405144
2019 Beijing Colleges and Universities High-level Talent Cross-cultivation PlanPXM2020_014207_000009

More Information
Corresponding author:ZENG Yang, E-mail: yangzeng@sdu.edu.cn;PAN Yuepeng, E-mail: panyuepeng@mail.iap.ac.cn


摘要
HTML全文
(5)(0)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:大气活性氮(Nr)是导致霾污染和过量氮沉降的主要前体物。随着近年来大气污染防治行动的深入,消减农业源Nr排放逐渐被提上议事日程。目前,针对农田和畜禽养殖场内外环境大气中Nr的实地测量资料较为缺乏,且以往研究多以氨气(NH3)为主,很少关注其他Nr成分。为了阐明农业活动对大气Nr的潜在影响,本研究基于扩散管主动采样系统,对华北平原典型农田(河北香河和栾城农田)、养猪场和蛋鸡养殖场环境大气中的4种Nr成分,即NH3、硝酸气体(HNO3)、颗粒态铵盐(p-NH4+)和颗粒态硝酸盐(p-NO3-)开展了现场同步观测。结果显示:观测期间猪舍内NH3和p-NH4+平均浓度(1 250.9 μg·m-3和76.6 μg·m-3)显著高于舍外(378.5 μg·m-3和4.2 μg·m-3);而猪舍内HNO3和p-NO3-平均浓度(10.3 μg·m-3和20.8 μg·m-3)与舍外接近(9.8 μg·m-3和22.1 μg·m-3);鸡舍内仅NH3平均浓度(197.7 μg·m-3)显著高于舍外(77.3 μg·m-3),而p-NH4+、HNO3和p-NO3-平均浓度(7.3 μg·m-3、9.0 μg·m-3和6.2 μg·m-3)均与舍外接近(10.7 μg·m-3、9.9 μg·m-3和7.2 μg·m-3)。总体上看,养猪场环境大气中Nr浓度显著高于养鸡场(P < 0.05)。香河和栾城农田大气NH3、p-NH4+、HNO3和p-NH4+的平均浓度分别为21.4 μg·m-3、1.9 μg·m-3、4.4 μg·m-3和5.5 μg·m-3,显著低于养殖场外Nr浓度(P < 0.05)。从形态组成上看,养殖场和农田大气Nr主要以NH3-N(占比>80%)的形态存在,说明华北农业活动产生的Nr主要通过NH3的形式向外扩散传输,并没有在当地快速转化为颗粒物。未来需要进一步研究Nr在大气中的传输路径和转化机制,为制定有效的减排措施提供科学支持。
关键词:华北平原/
农田/
养殖场/
养殖圈舍/
活性氮/
大气污染
Abstract:Reactive nitrogen (Nr) is the main precursor of atmospheric haze pollution, which leads to excessive nitrogen deposition. With prevention and control measured for air pollution in recent years, reducing Nr from agricultural sources has recently been suggested. Currently, field measurements focusing on atmospheric Nr in farmland and animal farms are still limited and are mainly focused on ammonia (NH3), with little attention being paid to other Nr components. In order to characterize the potential impact of agricultural activities on atmospheric Nr concentrations, this study carried out simultaneous field measurements of major Nr species, including gaseous NH3, nitric acid (HNO3), particle ammonium (p-NH4+) and nitrate (p-NO3-), in two farmlands (Xianghe farmland and Luancheng farmland in Hebei Province), a pig farm and a poultry farm in the North China Plain using the active denuder sampling system. The results showed that the average concentrations of NH3 and p-NH4+ inside the pig house (1 250.9 and 76.6 μg·m-3, respectively) were significantly higher (P < 0.05) than those outside the pig house (378.5 and 4.2 μg·m-3, respectively). However, the average concentrations of HNO3 and p-NO3- inside the pig house (10.3 and 20.8 μg·m-3, respectively) were comparable to those outside the pig house (9.8 and 22.1 μg·m-3, respectively). In contrast, the measured Nr concentrations were similar both inside and outside the poultry house for all Nr species (overall ranged from 6.2 to 10.7 μg·m-3) except for NH3, which was significantly higher (P < 0.05) inside (197.7 μg·m-3) compared to outside (77.3 μg·m-3). In general, atmospheric Nr concentrations in the pig farm were significantly higher than those in the poultry farm (P < 0.05). The average air concentrations of NH3, p-NH4+, HNO3 and p-NO3- in the farmland were 21.4, 1.9, 4.4 and 5.5 μg·m-3, respectively, which were significantly lower than those outside the pig and poultry farms (P < 0.05). From the perspective of chemical composition, Nr mainly existed in the form of NH3-N (accounting for more than 80%) in pig, poultry and farmland environments, which indicated that the Nr produced by agricultural activities in the North China Plain mainly diffused outward in the form of NH3 instead of transforming into particles locally. Detailed investigations on the transmission mechanisms and transport pathways of Nr in the atmosphere are urgently needed to provide scientific support for the implementation of effective emission mitigation measures.
Key words:North China Plain/
Farm land/
Intensive pig and poultry farms/
Breeding house/
Reactive nitrogen/
Air pollution

HTML全文


图1Delta系统结构图
${\rm{p - NH}}_4^ + $指颗粒物铵盐, ${\rm{p - NO}}_3^ - $指颗粒物硝酸盐。${\rm{p - NH}}_4^ + $is particle ammonium.${\rm{p - NO}}_3^ - $ is particle nitrate.
Figure1.Diagram of Delta sampling system


下载: 全尺寸图片幻灯片


图2猪舍内外NHx (a)和NOy (b)浓度变化
${\rm{p - NH}}_4^ + $指颗粒物铵盐, ${\rm{p - NO}}_3^ - $指颗粒物硝酸盐。${\rm{p - NH}}_4^ + $ is particle ammonium. ${\rm{p - NO}}_3^ - $ is particle nitrate.
Figure2.NHx (a) and NOy (b) concentrations profiles inside and outside the pig house


下载: 全尺寸图片幻灯片


图3鸡舍内外NHx(a)和NOy(b)浓度变化
${\rm{p - NH}}_4^ + $指颗粒物铵盐, ${\rm{p - NO}}_3^ - $指颗粒物硝酸盐。${\rm{p - NH}}_4^ + $ is particle ammonium. ${\rm{p - NO}}_3^ - $ is particle nitrate.
Figure3.NHx(a) and NOy (b) concentrations profiles inside and outside the poultry house


下载: 全尺寸图片幻灯片


图4不同地区农田大气Nr浓度
${\rm{p - NH}}_4^ + $指颗粒物铵盐, ${\rm{p - NO}}_3^ - $指颗粒物硝酸盐。不同字母表示不同农田观测结果之间差异显著(P < 0.05)。p-NH4+ is particle ammonium, p-NO3 is particle nitrate. Different lowercase letters indicate significant differences between farmlands in two areas (P < 0.05).
Figure4.Nr concentrations in farmland atmosphere at Xianghe and Luancheng


下载: 全尺寸图片幻灯片


图5不同环境条件下不同形态活性氮(Nr)的N质量浓度百分比
1 :猪舍内; 2:猪舍外; 3:鸡舍内; 4:鸡舍外; 5:香河农田; 6:栾城农田。1: inside the pig house; 2: outside the pig house; 3: inside the poultry house; 4: outside the poultry house; 5: Xianghe farmland; 6: Luancheng farmland
Figure5.Composition in N mass concentration of different forms of reactive nitrogen (Nr) in different environments


下载: 全尺寸图片幻灯片


参考文献(30)
[1]GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892 doi: 10.1126/science.1136674
[2]LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China:An overview[J]. Environmental Pollution, 2011, 159(10):2251-2264 doi: 10.1016/j.envpol.2010.08.002
[3]XU W, WU Q H, LIU X J, et al. Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain[J]. Environmental Science and Pollution Research, 2016, 23(2):1158-1172 doi: 10.1007/s11356-015-5648-3
[4]孙猛, 徐媛, 刘茂辉, 等.天津市农田氮肥施用氨排放量估算及分布特征分析[J].中国生态农业学报, 2016, 24(10):1364-1370 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201610010
SUN M, XU Y, LIU M H, et al. Emission and distribution characteristics of ammonia from nitrogen application in farmland of Tianjin[J]. Chinese Journal of Eco-Agriculture, 2016, 24(10):1364-1370 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201610010
[5]卢丽丽, 吴根义.农田氨排放影响因素研究进展[J].中国农业大学学报, 2019, 24(1):149-162 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201901019
LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1):149-162 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201901019
[6]ALMARAZ M, BAI E, WANG C, et al. Agriculture is a major source of NOx pollution in California[J]. Science Advances, 2018, 4(1):eaao3477 doi: 10.1126/sciadv.aao3477
[7]吴胜, 沈丹, 唐倩, 等.规模化半封闭式猪场舍内颗粒物、氨气和二氧化碳分布规律[J].畜牧与兽医, 2018, 50(3):30-38 http://d.old.wanfangdata.com.cn/Periodical/xmysy201803008
WU S, SHEN D, TANG Q, et al. Distribution of particulate matters and noxious gases in large-scale semi-enclosed swine houses[J]. Animal Husbandry & Veterinary Medicine, 2018, 50(3):30-38 http://d.old.wanfangdata.com.cn/Periodical/xmysy201803008
[8]XU W, ZHENG K, LIU X J, et al. Atmospheric NH3 dynamics at a typical pig farm in China and their implications[J]. Atmospheric Pollution Research, 2014, 5(3):455-463 doi: 10.5094/APR.2014.053
[9]ZHANG Q, ZHENG Y X, TONG D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49):24463-24469 doi: 10.1073/pnas.1907956116
[10]TANG Y S, SIMMONS I, VAN DIJK N, et al. European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes[J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4):183-195 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=55b031282b56355cf465c74789866f7b
[11]STINN J P, XIN H W, SHEPHERD T A, et al. Ammonia and greenhouse gas emissions from a modern U.S. swine breeding-gestation-farrowing system[J]. Atmospheric Environment, 2014, 98:620-628 doi: 10.1016/j.atmosenv.2014.09.037
[12]SUN G, GUO H Q, PETERSON J. Seasonal odor, ammonia, hydrogen sulfide, and carbon dioxide concentrations and emissions from swine grower-finisher rooms[J]. Journal of the Air & Waste Management Association, 2010, 60(4):471-480 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221002724/
[13]RADON K, DANUSER B, IVERSEN M, et al. Air contaminants in different European farming environments[J]. Annals of Agricultural and Environmental Medicine:AAEM, 2002, 9(1):41-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000197018
[14]李新建, 吕刚, 任广志.影响猪场氨气排放的因素及控制措施[J].家畜生态学报, 2012, 33(1):86-93 doi: 10.3969/j.issn.1673-1182.2012.01.019
LI X J, LYU G, REN G Z. Influencing factors of ammonia emissions from pig houses and mitigation techniques[J]. Acta Ecologiae Animalis Domastici, 2012, 33(1):86-93 doi: 10.3969/j.issn.1673-1182.2012.01.019
[15]TI C P, GAO B, LUO Y X, et al. Isotopic characterization of NHx-N in deposition and major emission sources[J]. Biogeochemistry, 2018, 138(1):85-102 doi: 10.1007/s10533-018-0432-3
[16]尹兴, 张丽娟, 刘学军, 等.河北平原城市近郊农田大气氮沉降特征[J].中国农业科学, 2017, 50(4):698-710 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201704010
YIN X, ZHANG L J, LIU X J, et al. Nitrogen deposition in suburban croplands of Hebei Plain[J]. Scientia Agricultura Sinica, 2017, 50(4):698-710 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201704010
[17]GREEN A R, WESLEY I, TRAMPEL D W, et al. Air quality and bird health status in three types of commercial egg layer houses[J]. Journal of Applied Poultry Research, 2009, 18(3):605-621 doi: 10.3382/japr.2007-00086
[18]COSTA A, FERRARI S, GUARINO M. Yearly emission factors of ammonia and particulate matter from three laying-hen housing systems[J]. Animal Production Science, 2012, 52(12):1089-1098 doi: 10.1071/AN11352
[19]PAN Y P, TIAN S L, ZHAO Y H, et al. Identifying ammonia hotspots in China using a National Observation Network[J]. Environmental Science & Technology, 2018, 52(7):3926-3934 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f11c3cb5d20fedc07fd2588739ad25a
[20]YANG L X, ZHOU X H, WANG Z, et al. Airborne fine particulate pollution in Jinan, China:Concentrations, chemical compositions and influence on visibility impairment[J]. Atmospheric Environment, 2012, 55:506-514 doi: 10.1016/j.atmosenv.2012.02.029
[21]XU Q C, WANG S X, JIANG J K, et al. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China[J]. Science of The Total Environment, 2019, 689:1293-1303 doi: 10.1016/j.scitotenv.2019.06.294
[22]WEN L, CHEN J M, YANG L X, et al. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer:The important roles of ammonia and ozone[J]. Atmospheric Environment, 2015, 101:294-302 doi: 10.1016/j.atmosenv.2014.11.037
[23]刘雨思, 李杏茹, 张怡萌, 等.济南市秋冬季大气细粒子污染特征及来源[J].环境化学, 2017, 36(4):787-798 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201704012
LIU Y S, LI X R, ZHANG Y M, et al. Characteristics and sources of airborne fine particles during the fall and winter in Jinan[J]. Environmental Chemistry, 2017, 36(4):787-798 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjhx201704012
[24]DAVID FELIX J, ELLIOTT E M, GISH T, et al. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. Atmospheric Environment, 2014, 95:563-570 doi: 10.1016/j.atmosenv.2014.06.061
[25]苗红妍, 温天雪, 王跃思, 等.阜康大气气溶胶中水溶性无机离子粒径分布特征研究[J].环境科学, 2014, 35(6):2045-2051 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201406002
MIAO H Y, WEN T X, WANG Y S, et al. Size distributions of water-soluble inorganic ions in atmospheric aerosols in Fukang[J]. Environmental Science, 2014, 35(6):2045-2051 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201406002
[26]LUO X S, LIU P, TANG A H, et al. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics[J]. Atmospheric Environment, 2013, 74:209-216 doi: 10.1016/j.atmosenv.2013.03.054
[27]赵梦雪, 吴琳, 方小珍, 等.天津市道路环境大气颗粒物水溶性无机离子分析[J].环境科学, 2016, 37(11):4133-4141 http://d.old.wanfangdata.com.cn/Periodical/hjkx201611011
ZHAO M X, WU L, FANG X Z, et al. Water-soluble inorganic ions in the road ambient atmospheric particles of Tianjin[J]. Environmental Science, 2016, 37(11):4133-4141 http://d.old.wanfangdata.com.cn/Periodical/hjkx201611011
[28]刘平, 刘学军, 骆晓声, 等.山西北部农村区域大气活性氮沉降特征[J].生态学报, 2016, 36(17):5353-5359 http://d.old.wanfangdata.com.cn/Periodical/stxb201617008
LIU P, LIU X J, LUO X S, et al. The atmospheric deposition characteristics of reactive nitrogen (Nr) species in Shuozhou area[J]. Acta Ecologica Sinica, 2016, 36(17):5353-5359 http://d.old.wanfangdata.com.cn/Periodical/stxb201617008
[29]田世丽, 刘学军, 潘月鹏, 等.应用扩散管测量霾污染期间大气氮硫化合物浓度的方法[J].环境科学, 2017, 38(9):3605-3609 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201709007
TIAN S L, LIU X J, PAN Y P, et al. Observations of reactive nitrogen and sulfur compounds during haze episodes using a denuder-based system[J]. Environmental Science, 2017, 38(9):3605-3609 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201709007
[30]HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222 doi: 10.1038/nature13774

相关话题/大气 农田 环境 图片 环境科学