杨荣全1,
李明1,
段碧华2,
刁田田1,
马芬1,
郭李萍1,,
1.中国农业科学院农业环境与可持续发展研究所 北京 100081
2.北京农学院生物与资源环境学院 北京 102206
基金项目: “十三五”国家重点研发计划专项课题2017YFD0300301
详细信息
作者简介:牛晓光, 主要从事农业气象方面的研究。E-mail:nxg18811072358@163.com
通讯作者:郭李萍, 主要研究方向为作物与环境交互作用。E-mail:guoliping@caas.cn
中图分类号:S162.5计量
文章访问数:485
HTML全文浏览量:6
PDF下载量:282
被引次数:0
出版历程
收稿日期:2019-09-18
录用日期:2019-11-06
刊出日期:2020-02-01
Effects of interaction between elevated atmospheric CO2 concentration and nitrogen fertilizer on photosynthetic characteristic and yield of maize
NIU Xiaoguang1,,YANG Rongquan1,
LI Ming1,
DUAN Bihua2,
DIAO Tiantian1,
MA Fen1,
GUO Liping1,,
1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
Funds: the National Key Research and Development Program of China2017YFD0300301
More Information
Corresponding author:GUO Liping, E-mail:guoliping@caas.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为阐明大气CO2浓度升高和氮肥交互作用对C4作物玉米光合生理和产量的影响,本研究利用自由大气CO2富集(FACE)平台,以玉米品种‘郑单958’为试验材料,在不同施氮量[常氮180 kg(N)·hm-2、低氮72 kg(N)·hm-2]下比较大气CO2浓度[(400±15)μmol·mol-1]和高CO2浓度[(550±15)μmol·mol-1]对玉米生长的影响。结果表明:1)大气CO2浓度升高使玉米苗期叶片叶绿素浓度显著(P=0.025)增加9.5%,抽雄期净光合速率显著(P=0.009)增加9.0%;低氮和常氮下,高CO2浓度使玉米各主要生育期胞间CO2浓度分别显著增加34.8%~48.5%和40.0%~49.4%,气孔导度在大口期和抽雄期分别显著下降21.6%(P=0.015)和22.1%(P=0.010),玉米叶片水分利用效率在大口期、抽雄期和灌浆期分别显著增加12.9%(P=0.002)、9.8%(P=0.019)和18.8%(P=0.001);高CO2浓度使玉米非光化学淬灭呈降低趋势、PSII有效光化学量子产量有增加趋势;相同氮水平下,高CO2浓度对玉米产量没有显著影响。2)高CO2浓度和合理施氮交互作用对玉米功能叶叶绿素含量、净光合速率、PSⅡ有效光化学量子产量增加有一定的促进作用,如在大口期和抽雄期,常氮+高CO2浓度处理叶绿素含量比低氮+大气CO2浓度处理增加17.3%和10.7%,高CO2浓度和合理施氮量交互作用有增加玉米产量的潜力,合理增加施氮量促进了CO2肥效的发挥。在未来大气CO2浓度升高条件下合理施氮对C4作物玉米生长发育有促进作用。
Abstract:Since the industrial revolution, the concentration of atmospheric CO2 has increased from 280 μmol·mol-1 to 400 μmol·mol-1. Nitrogen is a necessary element for many important enzyme-mediated processes in plant growth and is the primary nutrient needed for plant growth. Among different C4 crops grown worldwide, including China, maize is the most widely planted crop. Clear answers regarding the effect of elevated atmospheric CO2 concentration (eCO2) on corn growth and the interaction between eCO2 and nitrogen fertilizers (N) are yet not to be attained. Studying the impact of eCO2 on maize growth under different nitrogen supply conditions is important to assess the role of climate change in the C4 crop growth. A Free Air CO2 Enrichment (FACE) facility was used in this experiment. The FACE facility has six octagon loops for eCO2, (550±15) μmol·mol-1, and six additional octagon loops for ambient CO2 concentration of (400±15) μmol·mol-1 (aCO2); three of which are eCO2 experimental loops and the other three are aCO2 experimental loops applied with conventional nitrogen fertilizer, 180 kg(N)·hm-2 (CN). The rest are low nitrogen, 72 kg(N)·hm-2 (LN), application treatments. Twelve experimental loops were arranged randomly in the maize field, with the plants spacing of 25 cm and a rows spacing of 60 cm. Results showed that under eCO2, the chlorophyll concentration of maize seedling leaves increased significantly by 9.5%, and the net photosynthetic rate increased by 9.0% at the tasseling stage. During the maize growth period, eCO2 significantly enhanced the intercellular CO2 concentration by 34.8%-48.5% and 40.0%-49.4% under low nitrogen and conventional nitrogen application conditions, respectively. In addition, the stomatal conductance decreased by 21.6% and 22.1% at the 12-leaf and the tasseling stages, respectively. As a consequence of decreased stomatal conductance, the efficiency of water consumption in maize leaves increased by 12.9%, 9.8%, and 18.8% at the 12-leaf stage, tasseling stage and filling stage, respectively. eCO2 also decreased Non-Photochemical Quenching (NPQ), and increased PSⅡ effective photochemical quantum yield (Fv'/Fm') value. At the same nitrogen fertilizer (N) level, eCO2 had no significant effect on the maize yield. Secondly, the interaction of eCO2 and a reasonable increase of N application rate promoted the chlorophyll content, net photosynthetic rate, and Fv'/Fm' of maize functional leaves. For instance, the chlorophyll content of functional leaves for CN-eCO2 against LN-aCO2 increased by 17.3% and 10.7%, respectively, at the 12-leaf and tasseling stages. The combination of eCO2 and a reasonable increase in the N application achieved the maximized maize yield, indicating the promotional effect of N application under the eCO2 conditions. Appropriate application of nitrogen fertilizer has the potential to promote the growth and development of maize crop under eCO2 conditions in future.
HTML全文
图12018年玉米生育期间
Figure1.Temperature and precipitation during maize growth period (June-September) in 2018
下载: 全尺寸图片幻灯片
图2不同CO2浓度和氮肥用量处理下玉米主要生育期的功能叶叶绿素含量
LN、CN分别指低氮用量和常规氮用量处理, aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理。V6:六叶期; V12:大口期; VT:抽雄期; R3:灌浆期。不同小写字母表示同一生育期不同处理间差异在P < 0.05水平上显著。ns表示不显著, *和**分别表示同一生育期CO2、氮肥及其交互作用在P < 0.05和P < 0.01水平显著。
Figure2.Concentrations of chlorophyll in functional leaves of maize under different treatments of CO2 concentration and nitrogen fertilizer application during different main growth stages
LN and CN mean the treatments of low nitrogen and conventional nitrogen application. aCO2 and eCO2 mean the treatments of ambient CO2 concentration and elevated CO2 concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: tasseling stage; R3: filling stage. Different lowercase letters indicate significant differences among treatments during the same growth stage (P < 0.05). "ns" indicates no significant effect, * and ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.05 and P < 0.01, respectively.
下载: 全尺寸图片幻灯片
图3不同CO2浓度和氮肥用量处理下玉米主要生育期的功能叶净光合速率
LN、CN分别指低氮用量和常规氮用量处理, aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理。V6:六叶期; V12:大口期; VT:抽雄期; R3:灌浆期。不同小写字母表示同一生育期不同处理间差异在P < 0.05水平上显著。ns表示不显著, *和**分别表示同一生育期CO2、氮肥及其交互作用在P < 0.05和P < 0.01水平显著。
Figure3.Net photosynthetic rate of functional leaves of maize under different treatments of CO2 concentration and nitrogen fertilizer application during different main growth stages
LN and CN mean the treatments of low nitrogen and conventional nitrogen application. aCO2 and eCO2 mean the treatments of ambient CO2 concentration and elevated CO2 concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: tasseling stage; R3: filling stage. Different lowercase letters indicate significant differences among treatments during the same growth stage (P < 0.05). "ns" indicates no significant effect, * and ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.05 and P < 0.01, respectively.
下载: 全尺寸图片幻灯片
图4玉米主要生育期不同CO2浓度和氮肥用量处理功能叶胞间CO2浓度
LN、CN分别指低氮用量和常规氮用量处理, aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理。V6:六叶期; V12:大口期; VT:抽雄期; R3:灌浆期。不同小写字母表示同一生育期不同处理间差异在P < 0.05水平上显著。ns表示不显著, *和**分别表示同一生育期CO2、氮肥及其交互作用在P < 0.05和P < 0.01水平显著。
Figure4.Intercellular CO2 concentrations in functional leaves of maize under different treatments of CO2 concentration and nitrogen fertilizer application during different main growth stages
LN and CN mean the treatments of low nitrogen and conventional nitrogen application. aCO2 and eCO2 mean the treatments of ambient CO2 concentration and elevated CO2 concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: tasseling stage; R3: filling stage. Different lowercase letters indicate significant differences among treatments during the same growth stage (P < 0.05). "ns" indicates no significant effect, * and ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.05 and P < 0.01, respectively.
下载: 全尺寸图片幻灯片
图5不同CO2浓度和氮肥用量处理下玉米主要生育期功能叶叶片的气孔导度、蒸腾速率和水分利用效率
LN、CN分别指低氮用量和常规氮用量处理, aCO2和eCO2分别指常规浓度CO2处理和高浓度CO2处理。V6:六叶期; V12:大口期; VT:抽雄期; R3:灌浆期。不同小写字母表示同一生育期不同处理间差异在P < 0.05水平上显著。ns表示不显著, *和**分别表示同一生育期CO2、氮肥及其交互作用在P < 0.05和P < 0.01水平显著。
Figure5.Stomatal conductance, transpiration rate and water use efficiency of functional leaves of maize under different treatments of CO2 concentration and nitrogen fertilizer application during different main growth stages
LN and CN mean the treatments of low nitrogen and conventional nitrogen application. aCO2 and eCO2 mean the treatments of ambient CO2 concentration and elevated CO2 concentration. V6: 6-leaf stage; V12: 12-leaf stage; VT: tasseling stage; R3: filling stage. Different lowercase letters indicate significant differences among treatments during the same growth stage (P < 0.05). "ns" indicates no significant effect, * and ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.05 and P < 0.01, respectively.
下载: 全尺寸图片幻灯片
表12018年夏玉米播前土壤理化性状(0~20 cm)
Table1.Basic soil properties at 0-20 cm layer before sowing the maize in 2018
处理 Treatment | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 碱解氮 Alkali-hydrolyzable N (mg·kg-1) | 速效磷 Olsen-P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | pH |
常规CO2浓度 Ambient CO2 concentration | 28.1±1.2a | 1.55±0.07a | 105.5±2.9a | 38.2±1.9a | 158.6±7.8a | 8.39±0.02b |
高CO2浓度 Elevated CO2 concentration | 30.7±1.9a | 1.65±0.09a | 118.0±5.1a | 41.1±1.8a | 155.6±5.4a | 8.50±0.03a |
同列不同小写字母表示两个处理间差异在P < 0.05水平显著。Different lowercase letters in a column indicate significant differences between two treatments at 0.05 level. |
下载: 导出CSV
表2不同CO2浓度和氮肥用量处理对玉米主要生育期功能叶叶绿素荧光参数的影响
Table2.Major chlorophyll fluorescence parameters of functional leaves of maize under different treatments of CO2 concentration and nitrogen fertilizer application during main growth stages
生育期 Growth stage | 处理 Treatment | Fv'/Fm' | Qp | NPQ | |
六叶期 Six-leaf stage (V6) | 低氮用量 Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.46±0.04a | 0.75±0.03a | 0.63±0.09a |
高CO2浓度Elevated CO2 concentration | 0.50±0.03a | 0.81±0.02a | 0.53±0.06a | ||
常规氮用量 Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.49±0.02a | 0.76±0.02a | 0.55±0.02a | |
高CO2浓度Elevated CO2 concentration | 0.51±0.01a | 0.77±0.02a | 0.55±0.04a | ||
大口期 Twelve-leaf stage (V12) | 低氮用量Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.58±0.03a | 0.80±0.03a | 0.43±0.00a |
高CO2浓度Elevated CO2 concentration | 0.61±0.03a | 0.84±0.03a | 0.40±0.04a | ||
常规氮用量 Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.59±0.02a | 0.82±0.01a | 0.41±0.03a | |
高CO2浓度Elevated CO2 concentration | 0.62±0.02a | 0.82±0.03a | 0.39±0.06a | ||
抽雄期 Tasseling stage (VT) | 低氮用量Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.43±0.02b | 0.68±0.03bc | 0.53±0.04a |
高CO2浓度Elevated CO2 concentration | 0.51±0.03ab | 0.75±0.02ac | 0.47±0.01ab | ||
常规氮用量 Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.48±0.01ab | 0.66±0.03b | 0.45±0.04ab | |
高CO2浓度Elevated CO2 concentration | 0.55±0.03a | 0.77±0.02a | 0.43±0.03b | ||
灌浆期 Filling stage (R3) | 低氮用量Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.47±0.05a | 0.76±0.03a | 0.62±0.03a |
高CO2浓度Elevated CO2 concentration | 0.48±0.03a | 0.73±0.01a | 0.61±0.08a | ||
常规氮用量 Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 0.56±0.04a | 0.75±0.04a | 0.61±0.10a | |
高CO2浓度Elevated CO2 concentration | 0.58±0.02a | 0.75±0.04a | 0.58±0.05a | ||
同列不同小写字母表示在同一时期不同处理间差异达5%显著水平。Different lowercase letters in the same column indicate significant differences among different treatments at the same stage (P < 0.05). |
下载: 导出CSV
表3不同CO2浓度和氮肥用量对玉米地上部干物质量的影响
Table3.Effects of different CO2 concentration and nitrogen fertilizer application treatments on dry matter weight of aboveground parts of maize
处理 Treatment | 干物质Dry matter (g·plant-1) | |||||
六叶期 Six-leaf stage (V6) | 大口期 Twelve-leaf stage (V12) | 抽雄期 Tasseling stage (VT) | 灌浆期 Filling stage (R3) | 成熟期 Maturity (R6) | ||
低氮用量 Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 6.8±0.8a | 87.5±1.2b | 120.4±2.0a | 178.8±7.2b | 367.5±17.1a |
高CO2浓度Elevated CO2 concentration | 7.5±0.5a | 97.6±3.7ab | 114.5±3.2a | 203.6±4.1a | 368.3±18.6a | |
常规氮用量 Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 7.6±0.4a | 96.0±5.8ab | 116.1±2.9a | 214.4±8.1a | 391.9±12.5a |
高CO2浓度Elevated CO2 concentration | 8.3±0.4a | 106.2±4.7a | 126.5±5.6a | 217.7±6.0a | 392.5±11.2a | |
显著性 Significant | CO2 | ns | ns | ns | ns | ns |
N | ns | ns | ns | ** | ns | |
CO2×N | ns | ns | ns | ns | ns | |
同列不同小写字母表示在同一时期不同处理间差异达5%显著水平。ns表示影响不显著, **表示同一生育期CO2、氮肥及其交互作用的影响在P < 0.01水平显著。Different lowercase letters in the same column indicate significant differences among different treatments during the same growth stage (P < 0.05). “ns” denotes no significant effect, ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.01. |
下载: 导出CSV
表4不同CO2浓度和氮肥用量对玉米产量及其构成因素和部分穗性状的影响
Table4.Effects of different CO2 concentration and nitrogen fertilizer application treatments on maize yield and its components and some ear characters
处理 Treatment | 穗长 Ear length (cm) | 穗粗 Ear diameter (cm) | 穗粒数 Kernels per plant | 穗粒重 Kernel weight (g) | 千粒重 1000-kernel weight (g) | 产量 Grain yield (kg·hm-2) | |
低氮用量(LN) Low nitrogen | 常规CO2浓度Ambient CO2 concentration | 21.1±0.3a | 16.1±0.1bc | 630.2±11.2a | 192.6±5.1b | 317.7±4.8b | 8 379±226b |
高CO2浓度Elevated CO2 concentration | 21.2±0.4a | 15.8±0.2b | 626.6±11.2a | 193.4±4.5b | 328.4±7.8ab | 8 399±112b | |
常规氮用量(CN) Control nitrogen | 常规CO2浓度Ambient CO2 concentration | 21.3±0.2a | 16.5±0.1ac | 638.0±12.3a | 213.0±4.5a | 344.9±4.3a | 9 219±65a |
高CO2浓度Elevated CO2 concentration | 21.1±0.1a | 16.7±0.2a | 629.1±9.1a | 210.3±2.3a | 337.7±5.2a | 9 311±187a | |
差异显著性 Significant | CO2 | ns | ns | ns | ns | ns | ns |
N | ns | ** | ns | ** | * | ** | |
CO2 × N | ns | ns | ns | ns | ns | ns | |
同列不同小写字母表示不同处理间差异达5%显著水平。ns表示影响不显著, *和**表示同一生育期CO2、氮肥及其交互作用的影响在P < 0.05和P < 0.01水平显著。Different lowercase letters in the same column indicate significant differences among different treatments during the same growth stage (P < 0.05). “ns” denotes no significant effect, * and ** indicate significant effects of CO2, nitrogen fertilizer and their interaction during the same growth stage at P < 0.05 and P < 0.01, respectively. |
下载: 导出CSV
参考文献
[1] | STOCKER T F, QIN D H, PLATTNER G K, et al. Summary for Policymakers[M]. Cambridge, United Kingdom:Cambridge University Press, 2013 |
[2] | Intergovernmental Panel on Climate Change. Working Group Ⅱ. Climate Change 2014: Impacts, Adaptation, and Vulnerability[M]. IPCC Working Group Ⅱ, 2014 |
[3] | MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503):139-142 doi: 10.1038/nature13179 |
[4] | 孟凡超, 郭军, 周莉, 等.气温、CO2浓度和降水交互作用对作物生长和产量的影响[J].应用生态学报, 2017, 28(12):4117-4126 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712036 MENG F C, GUO J, ZHOU L, et al. Interactive effects of temperature, CO2 concentration and precipitation on growth and yield of crops[J]. Chinese Journal of Applied Ecology, 2017, 28(12):4117-4126 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712036 |
[5] | JOHANNESSEN M M, MIKKELSEN T N, NERSTING L G, et al. Effects of increased atmospheric CO2 on varieties of oat[J]. Plant Breeding, 2005, 124(3):253-256 doi: 10.1111/j.1439-0523.2005.01096.x |
[6] | HASEGAWA T, SAKAI H, TOKIDA T, et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan[J]. Functional Plant Biology, 2013, 40(2):148-159 doi: 10.1071/FP12357 |
[7] | THILAKARATHNE C L, TAUSZ-POSCH S, CANE K, et al. Intraspecific variation in leaf growth of wheat (Triticum aestivum) under Australian Grain Free Air CO2 Enrichment (AGFACE):is it regulated through carbon and/or nitrogen supply?[J]. Functional Plant Biology, 2015, 42(3):299-308 doi: 10.1071/FP14125 |
[8] | BUNCE J A. Variable responses to CO2 of the duration of vegetative growth and yield within a maturity group in soybeans[J]. American Journal of Plant Sciences, 2016, 7(13):1759-1764 doi: 10.4236/ajps.2016.713164 |
[9] | GHANNOUM O, VON CAEMMERER S, ZISKA L H, et al. The growth response of C4 plants to rising atmospheric CO2 partial pressure:a reassessment[J]. Plant, Cell & Environment, 2000, 23(9):931-942 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913338100500301 |
[10] | AWIKA J M, PIIRONEN V, BEAN S. Advances in cereal science:implications to food processing and health promotion[M]. Washington, DC:American Chemical Society, 2011, (10):1021-1089 |
[11] | TRIGGS J M, KIMBALL B A, PINTER P J Jr, et al. Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum[J]. Agricultural and Forest Meteorology, 2004, 124(1/2):63-79 https://naldc.nal.usda.gov/download/44838/PDF |
[12] | LEAKEY A D B, URIBELARREA M, AINSWORTH E A, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant Physiology, 2006, 140(2):779-790 doi: 10.1104/pp.105.073957 |
[13] | 刘紫娟, 李萍, 宗毓铮, 等.大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J].中国生态农业学报, 2017, 25(1):55-60 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170108&flag=1 LIU Z J, LI P, ZONG Y Z, et al. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):55-60 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170108&flag=1 |
[14] | REICH P B, HOBBIE S E, LEE T D, et al. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment[J]. Science, 2018, 360(6386):317-320 doi: 10.1126/science.aas9313 |
[15] | AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 2004, 165(2):351-372 doi: 10.1111/j.1469-8137.2004.01224.x |
[16] | EHLERINGER J R, CERLING T E, HELLIKER B R. C4 photosynthesis, atmospheric CO2, and climate[J]. Oecologia, 1997, 112(3):285-299 doi: 10.1007/s004420050311 |
[17] | RICHARDSON A E, BAREA J, MCNEILL A M, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(1/2):305-339 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0266cf7f6d5beada9ef20312b315274f |
[18] | WONG S C, OSMOND C B. Elevated atmosphere partial pressure of CO2 and plant growth. Ⅲ. Interactions between Triticum aestivum (C3) and Echinochloa frumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below-ground responses estimated using the δ13C value of root biomass[J]. Functional Plant Biology, 1991, 18(2):137-152 doi: 10.1071/PP9910137 |
[19] | 姜帅, 居辉, 韩雪, 等. CO2肥效及水肥条件对作物影响研究进展[J].核农学报, 2013, 27(11):1783-1789 doi: 10.11869/hnxb.2013.11.1783 JIANG S, JU H, HAN X, et al. Effects of CO2 fertilization, water and nutrient conditions on crops:A review[J]. Acta Agriculturae Nucleatae Sinica, 2013, 27(11):1783-1789 doi: 10.11869/hnxb.2013.11.1783 |
[20] | GHANNOUM O, CONROY J P. Nitrogen deficiency precludes a growth response to CO2 enrichment in C3 and C4 Panicum grasses[J]. Australian Journal of Plant Physiology, 1998, 25(5):627-636 |
[21] | 居辉, 姜帅, 李靖涛, 等.北方冬麦区CO2浓度增高与氮肥互作对冬小麦生理特性和产量的影响[J].中国农业科学, 2015, 48(24):4948-4956 doi: 10.3864/j.issn.0578-1752.2015.24.009 JU H, JIANG S, LI J T, et al. Interactive effects of elevated CO2 and nitrogen on the physiology and yield of winter wheat in north winter wheat region of China[J]. Scientia Agricultura Sinica, 2015, 48(24):4948-4956 doi: 10.3864/j.issn.0578-1752.2015.24.009 |
[22] | 蔡永萍.植物生理学实验指导[M].北京:中国农业大学出版社, 2014 CAI Y P. Experimental Guide to Plant Physiology[M]. Beijing:China Agricultural University Press, 2014 |
[23] | AINSWORTH E A, DAVEY P A, BERNACCHI C J, et al. A meta-analysis of elevated[CO2] effects on soybean (Glycine max) physiology, growth and yield[J]. Global Change Biology, 2002, 8(8):695-709 doi: 10.1046/j.1365-2486.2002.00498.x |
[24] | SAGE R F, KUBIEN D S. The temperature response of C3 and C4 photosynthesis[J]. Plant, Cell & Environment, 2007, 30(9):1086-1106 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1056702 |
[25] | 孙加伟, 赵天宏, 付宇, 等. CO2浓度升高对玉米叶片光合生理特性的影响[J].玉米科学, 2009, 17(2):81-85 http://d.old.wanfangdata.com.cn/Periodical/ymkx200902020 SUN J W, ZHAO T H, FU Y, et al. Effects of elevated CO2 concentration on photo-physiological characteristics of maize leaves[J]. Journal of Maize Sciences, 2009, 17(2):81-85 http://d.old.wanfangdata.com.cn/Periodical/ymkx200902020 |
[26] | FRANKS P J, DOHENY-ADAMS T W, BRITTON-HARPER Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytologist, 2015, 207(1):188-195 doi: 10.1111/nph.13347 |
[27] | HABERMANN E, SAN MARTIN J A B, CONTIN D R, et al. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum[J]. PLoS One, 2019, 14(2):e0212506 DOI: 10.1371/journal.pone.0212506 |
[28] | LEAKEY A D B, AINSWORTH E A, BERNACCHI C J, et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations:six important lessons from FACE[J]. Journal of Experimental Botany, 2009, 60(10):2859-2876 doi: 10.1093/jxb/erp096 |
[29] | 王秋兰, 靳鲲鹏, 曹晋军.大气CO2浓度升高对玉米叶片光合生理指标及其产量的影响[J].山西农业科学, 2018, 46(12):2051-2053 doi: 10.3969/j.issn.1002-2481.2018.12.21 WANG Q L, JIN K P, CAO J J. Effects of atmospheric CO2 concentration enhancement on photosynthetic physiological indexes and yield of maize leaves[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(12):2051-2053 doi: 10.3969/j.issn.1002-2481.2018.12.21 |
[30] | 王丽梅, 李世清, 邵明安.水、氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响[J].中国农业科学, 2010, 43(13):2697-2705 doi: 10.3864/j.issn.0578-1752.2010.13.009 WANG L M, LI S Q, SHAO M A. Effects of N and water supply on dry matter and N accumulation and distribution in maize (Zea mays L.) leaf and straw-sheath[J]. Scientia Agricultura Sinica, 2010, 43(13):2697-2705 doi: 10.3864/j.issn.0578-1752.2010.13.009 |