黄威2,
潘月鹏2,
顾梦娜2,
吕雪梅2,
倪雪2,
何月欣2,
刘博文2,
王跃思1, 2,,,
田世丽2,,
1.甘肃农业大学林学院 兰州 730070
2.中国科学院大气物理研究所/大气边界层物理和大气化学国家重点实验室 北京 100029
基金项目: 国家重点研发计划项目2016YFD0800302
国家重点研发计划项目2016YFC0201802
详细信息
作者简介:张国忠, 主要研究方向为大气沉降、生态与环境。E-mail:zhangguozhong@dq.cern.ac.cn
通讯作者:王跃思, 主要研究方向为大气化学与环境, E-mail:wys@dq.cern.ac.cn
田世丽, 主要研究方向为大气化学, E-mail:tianshili@mail.iap.ac.cn
中图分类号:X592计量
文章访问数:1748
HTML全文浏览量:5
PDF下载量:533
被引次数:0
出版历程
收稿日期:2019-02-01
录用日期:2019-03-27
刊出日期:2019-08-01
Dry deposition flux of atmospheric heavy metals and its source apportionment in a typical farmland of Hebei Province
ZHANG Guozhong1, 2,,HUANG Wei2,
PAN Yuepeng2,
GU Mengna2,
LYU Xuemei2,
NI Xue2,
HE Yuexin2,
LIU Bowen2,
WANG Yuesi1, 2,,,
TIAN Shili2,,
1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry/Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Funds: the National Key Research and Development Program of China2016YFD0800302
the National Key Research and Development Program of China2016YFC0201802
More Information
Corresponding author:WANG Yuesi, E-mail: wys@dq.cern.ac.cn;TIAN Shili, E-mail: tianshili@mail.iap.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:重金属是影响农田土壤环境质量和农产品品质的主要污染物,大气沉降是农田重金属的来源之一。长期以来,由于观测资料缺乏,对于我国农业区大气重金属的沉降量和来源认识一直不清楚。本研究基于河北典型农田连续1年的外场观测,测试分析了大气气溶胶9个粒径段中25种金属元素的含量,结合干沉降阻抗模型估算了这些金属的干沉降量,并利用PMF模型对其来源进行了解析。结果表明,该区域25种金属元素在细粒子(DP ≤ 2.1 μm,DP为空气动力学直径,下同)、粗粒子(2.1 < DP ≤ 9 μm)和巨粒子(DP>9 μm)中的质量浓度存在较大差异。重金属(如:Zn、Cd和Pb等)主要富集在细粒子,而地壳源的金属(如:Al、Fe和Th等)主要富集在粗粒子。大多数金属元素的浓度呈现冬春季高于夏秋季的变化特征。Cr是细粒子和粗粒子中质量浓度最高的重金属,其次为As、Zn、Pb、V和Sb。重金属中,Cr的大气干沉降量最高,达350.7 mg·m-2·a-1,其次是As、Sb和V,分别为153.4 mg·m-2·a-1、103.1 mg·m-2·a-1和102.3 mg·m-2·a-1。研究区域大气中金属元素的主要来源为道路扬尘、工业、矿尘、燃煤和机动车排放。巨粒子中的金属主要来自矿尘源(62.0%),细粒子中的金属主要来自燃煤、机动车和工业源(67.7%)。颗粒物的粒径越小,人为排放源的贡献越大,重金属的污染风险(富集因子)也越高。农田重金属污染防治需要充分考虑大气沉降的输入及来源的变化。
关键词:农田/
大气干沉降/
重金属/
源解析/
污染控制
Abstract:Atmospheric deposition is a major contributor of heavy metals contaminating the farmland, which endangers the quality of soil as well as agricultural products. Because of the paucity of relevant observational data, the dry deposition flux and sources of atmospheric heavy metals in agricultural areas have for long remained unclear. Based on a year of field observation in a typical farmland in Hebei Province, we measured the content of 25 elements in nine size-segregated particles. The dry deposition flux of atmospheric metal elements was estimated by employing resistance modeling. In addition, the sources of atmospheric metal elements were apportioned using the PMF model. The results indicated that there were large differences in the concentrations of 25 metals between the fine particles (DP ≤ 2.1 μm, aerodynamic diameter, the same below), coarse particles (2.1 < DP ≤ 9 μm), and giant particles (DP>9 μm). Heavy metals (such as Zn, Cd, and Pb) were primarily concentrated in fine particles, whereas the crustal elements (such as Al, Fe, and Th) were primarily concentrated in coarse particles. The concentrations of most metals were higher in spring and in winter rather than in summer and autumn. Annual mean concentration of Cr was the highest among the heavy metals both in fine and coarse particles, followed by As, Zn, Pb, V, and Sb. Regarding the dry deposition flux, Cr also had the highest value of 350.7 mg·m-2·a-1, followed by As, Sb, and V, which were 153.4, 103.1, and 102.3 mg·m-2·a-1, respectively. The primary sources of atmospheric metal elements confined to the study area were road dust, industrial pollution, mineral dust, coal combustion and vehicle emission. The metals in the giant particles were primarily from dust source (62.0%), whereas the metals in the fine particles were primarily from coal, motor vehicles and industrial sources (totally 67.7%). With decrease in particle size, the contribution of anthropogenic pollution increased, thereby increasing the pollution risk (enrichment factor) of heavy metals. In conclusion, the study was critical in considering the input and sources of atmospheric deposition regarding regulation of farmland involving heavy metals.
Key words:Farmland/
Atmospheric dry deposition/
Heavy metals/
Source apportionment/
Pollution control
HTML全文
图1研究区大气颗粒物中金属元素质量浓度的粒径分布
Figure1.Size distributions of metal elements in atmospheric particles of the study area
下载: 全尺寸图片幻灯片
图2研究区大气细、粗和巨粒子中金属元素年平均浓度
Figure2.Annual mean concentrations of metal elements in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图3研究区大气细、粗和巨粒子颗粒物中金属元素在其总质量浓度中的占比
Figure3.Relative proportions of concentrations of metal elements in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图4研究区大气细、粗和巨粒子中金属元素浓度季节变化
Figure4.Seasonal variations of concentrations of metal elements in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图5研究区大气细、粗和巨粒子中金属元素年平均干沉降通量
Figure5.Annual mean dry deposition fluxes of metal metals in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图6研究区大气细、粗和巨粒子中金属通量在其总通量中的占比
Figure6.Relative proportions of metal elements fluxes in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图7本文计算的干沉降通量值与其他地区通量值范围的比较
观测值来源于文献, 其中: a代表文献[31]; b代表文献[33]; c代表文献[34]; d代表文献[28]; e代表文献[27]; f代表文献[32]; g代表文献[35]; h代表文献[36]; i代表文献[37]; j代表文献[38]。
Figure7.Comparison of dry deposition fluxes between the modeled values in this study and observed values in other areas
Observed values are derived from literatures, where: "a" stands for the literature [31]; "b" stands for the literature [33]; "c" stands for the literature [34]; "d" stands for the literature [28]; "e" stands for the literature [27]; "f" stands for the literature [32]; "g" stands for the literature [35]; "h" stands for the literature [36]; "i" stands for the literature [37]; "j" stands for the literature [38].
下载: 全尺寸图片幻灯片
图8研究区大气细、粗、巨粒子中金属元素富集因子
Figure8.Enrichment factors of various metal elements in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
图9研究区大气颗粒物中不同金属元素PMF源解析结果
Figure9.Profiles of sources of metal elements in atmospheric particles identified by PMF model in the study area
下载: 全尺寸图片幻灯片
图10研究区不同源在大气细、粗、巨粒子中金属元素的相对贡献
Figure10.Relative contributions of each identified source to metal elements in fine, coarse and giant atmospheric particles in the study area
下载: 全尺寸图片幻灯片
参考文献
[1] | LI Z Y, MA Z W, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469:843-853 doi: 10.1016/j.scitotenv.2013.08.090 |
[2] | NAGAJYOTI P C, LEE K D, SREEKANTH T V M. Heavy metals, occurrence and toxicity for plants:A review[J]. Environmental Chemistry Letters, 2010, 8(3):199-216 doi: 10.1007/s10311-010-0297-8 |
[3] | NICHOLSON F A, SMITH S R, ALLOWAY B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. Science of the Total Environment, 2003, 311(1/3):205-219 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5404d84ac1f0b3250ea36d916d2f5d89 |
[4] | TóTH G, HERMANN T, DA SILVA M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016, 88:299-309 doi: 10.1016/j.envint.2015.12.017 |
[5] | XIA X Q, YANG Z F, CUI Y J, et al. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China[J]. Journal of Geochemical Exploration, 2014, 139:85-96 doi: 10.1016/j.gexplo.2013.06.008 |
[6] | PAN Y P, WANG Y S. Atmospheric wet and dry deposition of trace elements at 10 sites in northern China[J]. Atmospheric Chemistry and Physics, 2015, 15(2):951-972 doi: 10.5194/acp-15-951-2015 |
[7] | ZHU J X, WANG Q F, YU H L, et al. Heavy metal deposition through rainfall in Chinese natural terrestrial ecosystems:Evidences from national-scale network monitoring[J]. Chemosphere, 2016, 164:128-133 doi: 10.1016/j.chemosphere.2016.08.105 |
[8] | MOHAN S M. An overview of particulate dry deposition:Measuring methods, deposition velocity and controlling factors[J]. International Journal of Environmental Science and Technology, 2016, 13(1):387-402 doi: 10.1007/s13762-015-0898-7 |
[9] | ZHANG L M, GONG S L, PADRO J, et al. A size-segregated particle dry deposition scheme for an atmospheric aerosol module[J]. Atmospheric Environment, 2001, 35(3):549-560 doi: 10.1016/S1352-2310(00)00326-5 |
[10] | MIJI? Z, STOJI? A, PERI?I? M, et al. Seasonal variability and source apportionment of metals in the atmospheric deposition in Belgrade[J]. Atmospheric Environment, 2010, 44(30):3630-3637 doi: 10.1016/j.atmosenv.2010.06.045 |
[11] | LUO X S, IP C C M, LI W, et al. Spatial-temporal variations, sources, and transport of airborne inhalable metals (PM10) in urban and rural areas of northern China[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(9):13133-13165 doi: 10.5194/acpd-14-13133-2014 |
[12] | AMIL N, LATIF M T, KHAN M F, et al. Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment[J]. Atmospheric Chemistry and Physics, 2016, 16(8):5357-5381 doi: 10.5194/acp-16-5357-2016 |
[13] | COMERO S, VACCARO S, LOCORO G, et al. Characterization of the Danube River sediments using the PMF multivariate approach[J]. Chemosphere, 2014, 95:329-335 doi: 10.1016/j.chemosphere.2013.09.028 |
[14] | KUMAR A, ATTRI A K. Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of western Himalayas[J]. Aerosol and Air Quality Research, 2016, 16(3):519-529 doi: 10.4209/aaqr.2015.05.0284 |
[15] | 张志刚, 高庆先, 韩雪琴, 等.中国华北区域城市间污染物输送研究[J].环境科学研究, 2004, 17(1):14-20 doi: 10.3321/j.issn:1001-6929.2004.01.003 ZHANG Z G, GAO Q X, HAN X Q, et al. The study of pollutant transport between the cities in North China[J]. Research of Environmental Sciences, 2004, 17(1):14-20 doi: 10.3321/j.issn:1001-6929.2004.01.003 |
[16] | 潘月鹏, 王跃思, 胡波, 等.北京奥运时段河北香河大气污染观测研究[J].环境科学, 2010, 31(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/hjkx201001001 PAN Y P, WANG Y S, HU B, et al. Observation on atmospheric pollution in Xianghe during Beijing 2008 Olympic games[J]. Environmental Science, 2010, 31(1):1-9 http://d.old.wanfangdata.com.cn/Periodical/hjkx201001001 |
[17] | PAN Y P, WANG Y S, SUN Y, et al. Size-resolved aerosol trace elements at a rural mountainous site in northern China:Importance of regional transport[J]. Science of the Total Environment, 2013, 461/462:761-771 doi: 10.1016/j.scitotenv.2013.04.065 |
[18] | ZHANG L, HE Z. Technical note:An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles[J]. Atmospheric Chemistry and Physics, 2014, 14(7):3729-3737 doi: 10.5194/acp-14-3729-2014 |
[19] | SUN Z Q, MU Y J, LIU Y J, et al. A comparison study on airborne particles during haze days and non-haze days in Beijing[J]. Science of the Total Environment, 2013, 456/457:1-8 doi: 10.1016/j.scitotenv.2013.03.006 |
[20] | ALLEN A G, NEMITZ E, SHI J P, et al. Size distributions of trace metals in atmospheric aerosols in the United Kingdom[J]. Atmospheric Environment, 2001, 35(27):4581-4591 doi: 10.1016/S1352-2310(01)00190-X |
[21] | GAO J J, TIAN H Z, CHENG K, et al. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China:Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability[J]. Atmospheric Environment, 2014, 99:257-265 doi: 10.1016/j.atmosenv.2014.08.081 |
[22] | HIEU N T, LEE B K. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea[J]. Atmospheric Research, 2010, 98(2/4):526-537 |
[23] | DUAN F K, LIU X D, YU T, et al. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing[J]. Atmospheric Environment, 2004, 38(9):1275-1282 doi: 10.1016/j.atmosenv.2003.11.037 |
[24] | TIAN S L, PAN Y P, LIU Z R, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 2014, 279:452-460 doi: 10.1016/j.jhazmat.2014.07.023 |
[25] | TAN J H, DUAN J C, ZHEN N J, et al. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing[J]. Atmospheric Research, 2016, 167:24-33 doi: 10.1016/j.atmosres.2015.06.015 |
[26] | SUN Y L, WANG Z F, FU P Q, et al. Aerosol composition, sources and processes during wintertime in Beijing, China[J]. Atmospheric Chemistry and Physics, 2013, 13(9):4577-4592 doi: 10.5194/acp-13-4577-2013 |
[27] | YI S M, SHAHIN U, SIVADECHATHEP J, et al. Overall elemental dry deposition velocities measured around Lake Michigan[J]. Atmospheric Environment, 2001, 35(6):1133-1140 doi: 10.1016/S1352-2310(00)00242-9 |
[28] | TASDEMIR Y, KURAL C. Atmospheric dry deposition fluxes of trace elements measured in Bursa, Turkey[J]. Environmental Pollution, 2005, 138(3):462-472 doi: 10.1016/j.envpol.2005.04.012 |
[29] | ZHANG L, FANG G C, LIU C K, et al. Dry deposition fluxes and deposition velocities of seven trace metal species at five sites in central Taiwan-A summary of surrogate surface measurements and a comparison with model estimations[J]. Atmospheric Chemistry and Physics, 2012, 12(7):3405-3417 doi: 10.5194/acp-12-3405-2012 |
[30] | FANG G C, ZHANG L, HUANG C S. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury[J]. Atmospheric Environment, 2012, 61:371-377 doi: 10.1016/j.atmosenv.2012.07.052 |
[31] | ODABASI M, MUEZZINOGLU A, BOZLAKER A. Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey[J]. Atmospheric Environment, 2002, 36(38):5841-5851 doi: 10.1016/S1352-2310(02)00644-1 |
[32] | HSU S C, WONG G T F, GONG G C, et al. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea[J]. Marine Chemistry, 2010, 120(1/4):116-127 http://www.sciencedirect.com/science/article/pii/S0304420308001643 |
[33] | YI S M, LEE E Y, HOLSEN T M. Dry deposition fluxes and size distributions of heavy metals in Seoul, Korea during yellow-sand events[J]. Aerosol Science and Technology, 2001, 35(1):569-576 doi: 10.1080/02786820120775 |
[34] | 潘月鹏, 王跃思, 杨勇杰, 等.区域大气颗粒物干沉降采集及金属元素分析方法[J].环境科学, 2010, 31(3):553-559 http://d.old.wanfangdata.com.cn/Conference/7275896 PAN Y P, WANG Y S, YANG Y J, et al. Determination of trace metals in atmospheric dry deposition with a heavy matrix of PUF by inductively coupled plasma mass spectroscopy after microwave digestion[J]. Environmental Science, 2010, 31(3):553-559 http://d.old.wanfangdata.com.cn/Conference/7275896 |
[35] | ZHENG M, GUO Z G, FANG M, et al. Dry and wet deposition of elements in Hong Kong[J]. Marine Chemistry, 2005, 97(1/2):124-139 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc27b5e37e5c82441784027709afc6ed |
[36] | HERUT B, NIMMO M, MEDWAY A, et al. Dry atmospheric inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean):Sources and fluxes[J]. Atmospheric Environment, 2001, 35(4):803-813 doi: 10.1016/S1352-2310(00)00216-8 |
[37] | CHESTER R, NIMMO M, PRESTON M R. The trace metal chemistry of atmospheric dry deposition samples collected at Cap Ferrat:A coastal site in the Western Mediterranean[J]. Marine Chemistry, 1999, 68(1/2):15-30 doi: 10.1016-S0304-4203(99)00062-6/ |
[38] | SAKATA M, ASAKURA K. Atmospheric dry deposition of trace elements at a site on Asian-continent side of Japan[J]. Atmospheric Environment, 2011, 45(5):1075-1083 doi: 10.1016/j.atmosenv.2010.11.043 |
[39] | DUCE R A, HOFFMAN G L, ZOLLER W H. Atmospheric trace metals at remote northern and southern hemisphere sites:Pollution or natural?[J]. Science, 1975, 187(4171):59-61 doi: 10.1126/science.187.4171.59 |
[40] | MASON B, MOORE C B. Principles of Geochemistry[M]. 2nd ed. New York:Wiley, 1982 |
[41] | PEARSON C, HOWARD D, MOORE C, et al. Mercury and trace metal wet deposition across five stations in Alaska:Controlling factors, spatial patterns, and source regions[J]. Atmospheric Chemistry and Physics Discussions, 2018, 2018:1-28 |
[42] | CARLING G T, FERNANDEZ D P, JOHNSON W P. Dust-mediated loading of trace and major elements to Wasatch Mountain snowpack[J]. Science of the Total Environment, 2012, 432:65-77 doi: 10.1016/j.scitotenv.2012.05.077 |
[43] | U.S. Environmental Protection Agency Office of Research and Development. EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide[EB/OL]. United States Environmental Protection Agency.[2015-02-01]. https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf |
[44] | LI J W, CHEN B, DE LA CAMPA A M S, et al. 2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain[J]. Environmental Pollution, 2018, 236:570-579 doi: 10.1016/j.envpol.2018.01.101 |
[45] | YANG L X, CHENG S H, WANG X F, et al. Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China[J]. Atmospheric Environment, 2013, 75:265-269 doi: 10.1016/j.atmosenv.2013.04.058 |
[46] | TIAN S L, PAN Y P, WANG Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(1):1-19 http://d.old.wanfangdata.com.cn/Conference/9558811 |
[47] | FERNáNDEZ J A, EDERRA A, Nú?EZ E, et al. Biomonitoring of metal deposition in northern Spain by moss analysis[J]. Science of the Total Environment, 2002, 300(1/3):115-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a2c9d1e8942ff871ce25b851d292cd8 |
[48] | HU S H, MCDONALD R, MARTUZEVICIUS D, et al. UNMIX modeling of ambient PM2.5 near an interstate highway in Cincinnati, OH, USA[J]. Atmospheric Environment, 2006, 40(S2):378-395 http://www.sciencedirect.com/science/article/pii/S1352231006005930 |