删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于APSIM模型的大气气溶胶直接辐射效应对我国玉米产量的影响评估

本站小编 Free考研考试/2022-01-01

孔祥娜1, 2,,
赵俊芳2,,,
徐慧2,
徐精文1
1.四川农业大学资源学院 成都 611130
2.中国气象科学研究院灾害天气国家重点实验室 北京 100081
基金项目: 中国气象科学研究院基本科研业务费专项2017R001
国家重点研发计划项目2017YFA0603004

详细信息
作者简介:孔祥娜, 主要从事农业气象、病虫害识别等研究。E-mail:1263321300@qq.com
通讯作者:赵俊芳, 主要从事农业气象、全球变化、碳循环等研究。E-mail:zhaojfcams@163.com
中图分类号:S513

计量

文章访问数:871
HTML全文浏览量:4
PDF下载量:580
被引次数:0
出版历程

收稿日期:2018-12-10
录用日期:2019-03-13
刊出日期:2019-07-01

Assessment of the direct radiation effect of atmospheric aerosol on maize yield in China by using APSIM model

KONG Xiangna1, 2,,
ZHAO Junfang2,,,
XU Hui2,
XU Jingwen1
1. College of Resources, Sichuan Agricultural University, Chengdu 611130, China
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Funds: the Basic Research Funds-regular of Chinese Academy of Meteorological Sciences2017R001
the National Key Research and Development Program of China2017YFA0603004

More Information
Corresponding author:ZHAO Junfang, E-mail: zhaojfcams@163.com


摘要
HTML全文
(4)(4)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:在大气气溶胶污染日益严重的时代背景下,气溶胶对农作物生长发育的影响越来越不可忽视。本文以全球气溶胶监测网(AErosol RObotic NETwork,AERONET)中具有常年观测数据的我国北京、香河和太湖为研究站点,利用AERONET多年观测资料以及MODIS地表反照率数据,借助6S(Second Simulation of a Satellite Signal in the Solar Spectrum)辐射传输模式,计算出2001-2014年研究站点的气溶胶直接辐射效应,评估了APSIM(Agricultural Production Systems Simulator)作物模型的适用性,运用验证适用的APSIM模型分析了气溶胶直接辐射效应对我国玉米产量的影响。结果表明:1)验证后的APSIM玉米模型在我国北京、香河和太湖玉米产区具有较好的适用性。APSIM模型在模拟玉米的发育期以及产量中的模拟结果较好,其中各站点产量的相对均方根误差(NRMSE)为1.55%~6.24%,一致性指标(D)为0.80~0.99,决定系数(R2)为0.75~1.00。2)气溶胶使得太阳直接辐射降低;降低的趋势主要受气溶胶的净辐射通量的影响。2001-2014年期间北京、香河和太湖总辐射量分别降低31.95%、14.74%和28.30%。3)气溶胶直接辐射效应造成玉米减产。2001-2014年期间气溶胶直接辐射效应使得北京、香河和太湖玉米产量分别减少28.44%、14.89%和13.43%。总体来说,2001-2014年期间大气气溶胶直接辐射效应使得我国北京、香河和太湖3个高污染区的玉米产量减少13.43%~28.44%。
关键词:气溶胶/
直接辐射效应/
玉米产量/
APSIM模型/
6S辐射传输模式
Abstract:Owing to the increasingly serious atmospheric aerosol pollution, the impact of aerosols on the growth and development of crops can no longer be ignored. In this paper, the Beijing, Xianghe, and Taihu stations in China with perennial observation data in global aerosol monitoring network (AErosol RObotic NETwork, AERONET) were used as the research stations. Based on the AERONET data, MODIS surface albedo data and the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiation transfer model, the effects of aerosol direct radiation at three research stations from 2001 to 2014 were calculated. Then, the applicability of the APSIM (Agricultural Production Systems Simulator) model was evaluated, and the impacts of direct aerosol radiation on maize yield in China were analyzed by using the APSIM model. The results showed that:1) the verified APSIM maize model had good applicability in the maize producing areas of Beijing, Xianghe, and Taihu in China. The results of APSIM model were a better simulation of the developmental stages and the yield of maize, in which normalized root mean square error (NRMSE), coincidence indicator (D), and determinate coefficient (R2) were 1.55%-6.24%, 0.80-0.99, and 0.75-1.00, respectively. 2) Aerosols reduced direct solar radiation, and the decreasing trend was mainly affected by the net radiation flux of aerosols. The total solar radiation of Beijing, Xianghe, and Taihu stations reduced by 31.95%, 14.74% and 28.30%, respectively, from 2001 to 2014. 3) The direct radiation effect of aerosols caused a reduction in maize yield. The maize yields of the Beijing, Xianghe, and Taihu stations, caused by the direct radiation effect of aerosols, were reduced by 28.44%, 14.89%, and 13.43%, respectively, from 2001 to 2014. In general, because of the direct radiation effects of atmospheric aerosols, the maize yields from 2001 to 2014 were reduced by 13.43%-28.44% in three highly polluted areas (Beijing, Xianghe, and Taihu) in China.
Key words:Aerosol/
Direct radiation effect/
Maize yield/
APSIM model/
6S radiation transfer model

HTML全文


图1研究站点分布
Figure1.Locations of the research stations


下载: 全尺寸图片幻灯片


图23个研究站点玉米发育期、产量实测值和模拟值结果对比
Figure2.Comparison between measured and simulated phenology and yield of maize at three stations


下载: 全尺寸图片幻灯片


图3北京(a)、香河(b)和太湖(c)研究站点的气溶胶直接辐射效应
Figure3.Direct radiation effects of aerosol in stations of Beijing (a), Xianghe (b) and Taihu (c)


下载: 全尺寸图片幻灯片


图4北京(a)、香河(b)和太湖(c)研究站点有无气溶胶直接辐射效应下玉米产量的变化
Figure4.Changes in maize yield with or without effect of direct aerosol radiation at stations of Beijing (a), Xianghe (b) and Taihu (c)


下载: 全尺寸图片幻灯片

表1研究区域相关的全球气溶胶监测网(AERONET)站点信息
Table1.Information of stations of AErosol RObotic NETwork relative to the study areas
站点
Station
经度
Longitude
纬度
Latitude
海拔
Altitude (m)
观测时段(年-月)
Observation period (year-month)
北京
Beijing
116.38°E 39.98°N 92 2001-03—2016-12
香河
Xianghe
116.96°E 39.75°N 36 2001-03—2016-12
太湖
Taihu
120.22°E 31.42°N 20 2005-09—2016-08


下载: 导出CSV
表23个研究站点玉米的APSIM参数
Table2.Parameters of APSIM for maize at the three stations
站点
Station
出苗到营养生长期结束所需积温
Accumulated temperature from emergence to end of vegetative growth period (℃·d)
开花到成熟所需积温
Accumulated temperature from flowering to maturity (℃·d)
最大穗粒数
Maximum grain numbers per head
灌浆速率
Grain filling rate (g·d-1)
光周期斜率
Photoperiods slope (℃·h-1)
北京 Beijing 130 625 800 10.5 5
香河 Xianghe 145 600 850 9.5 5
太湖 Taihu 180 1 000 850 9.4 7


下载: 导出CSV
表3APSIM模型在3个研究站点对玉米生育期和产量模拟的验证结果
Table3.Verification results of APSIM model for maize growth period and yield at three stations
站点
Station
项目
Item
验证评价指标
Validation index
RMSE D MAE NRMSE (%) R2
北京
Beijing
播种到出苗天数 Days from sowing to emergence 1.15 0.65 0.67 15.06 0.57
播种到开花天数 Days from sowing to flowering 1.83 0.70 1.33 3.49 0.99
播种到成熟天数 Days from sowing to maturity 0.82 0.88 0.67 0.90 0.89
产量 Yield 226.48 0.80 216.68 3.62 0.75
香河
Xianghe
播种到出苗天数 Days from sowing to emergence 0.00 1.00 0.00 0.00 1.00
播种到开花天数 Days from sowing to flowering 1.73 0.66 1.67 3.37 1.00
播种到成熟天数 Days from sowing to maturity 1.91 0.74 1.67 1.95 0.43
产量 Yield 479.15 0.85 379.00 6.24 0.90
太湖
Taihu
播种到出苗天数 Days from sowing to emergence 1.83 0.91 1.33 10.33 0.96
播种到开花天数 Days from sowing to flowering 1.73 0.83 1.67 2.11 0.62
播种到成熟天数 Days from sowing to maturity 2.94 0.52 2.67 2.31 0.85
产量 Yield 113.37 0.99 79.07 1.55 1.00
RMSE:均方根误差; D:一致性指标; MAE:平均绝对误差; NRMSE:相对均方根误差; R2:决定系数。RMSE: root mean square error; D: coincidence indicator; MAE: mean absolute error; NRMSE: normalized root mean square error; R2: determinate coefficient.


下载: 导出CSV
表43个研究站点在气溶胶影响下的太阳辐射和玉米产量变化
Table4.Changes in solar radiation and maize yield caused by aerosols in three stations
站点
Station
年份
Year
气溶胶直接辐射变化 Change of aerosol direct radiation 玉米产量变化 Change of maize yield
辐射量 Radiation (W·m-2) 变化率 Change rate (%) 产量 Yield (kg·hm-2) 变化率 Change rate (%)
北京
Beijing
2002 -194.11 -29.65 -2 089.80 -23.02
2003 -238.46 -36.34 -2 497.70 -31.10
2004 -167.53 -25.45 -1 274.50 -15.02
2005 -96.00 -14.29 -1 486.70 -18.56
2006 -249.97 -38.07 -3 307.40 -35.39
2007 -265.52 -40.56 -3 376.70 -36.63
2008 -216.07 -32.95 -2 211.30 -27.91
2009 -217.95 -33.21 -3 371.20 -34.71
2010 -226.00 -34.44 -2 843.80 -33.12
2011 -229.14 -34.91 -3 262.80 -33.58
2012 -199.42 -30.63 -474.70 -26.80
2013 -220.67 -3.63 -2 760.00 -31.45
2014 -204.29 -31.22 -1 627.50 -22.38
香河
Xianghe
2005 -204.91 -32.96 -2 253.20 -23.26
2006 -126.33 -20.32 -111.30 -1.46
2007 -37.75 -6.08 -1 118.50 -13.54
2008 -180.26 -28.99 -3 284.30 -32.36
2009 -131.95 -21.22 -711.90 -8.53
2010 -75.46 -12.13 -650.20 -8.11
2011 -53.47 -8.60 -1 097.00 -11.29
2012 -43.03 -6.92 -834.60 -9.46
2013 -48.29 -7.77 -1 354.50 -15.87
2014 -18.23 -2.93 -591.20 -8.13
太湖
Taihu
2006 -232.74 -27.06 -918.80 -11.81
2007 -275.19 -31.94 -1 479.90 -17.33
2008 -255.10 -29.60 -1 286.70 -15.16
2009 -257.43 -29.73 -1 385.30 -15.08
2010 -193.26 -22.63 -1 741.90 -18.99
2011 -271.09 -1.72 -1 558.00 -17.00
2012 -218.83 -25.45 -770.30 -8.84


下载: 导出CSV

参考文献(30)
[1]NAEGER A R. Impact of dust aerosols on precipitation associated with atmospheric rivers using WRF-Chem simulations[J]. Results in Physics, 2018, 10:217-221 doi: 10.1016/j.rinp.2018.05.027
[2]张美根, 韩志伟. TRACE-P期间硫酸盐、硝酸盐和铵盐气溶胶的模拟研究[J].高原气象, 2003, 22(1):1-6 doi: 10.3321/j.issn:1000-0534.2003.01.001
ZHANG M G, HAN Z W. A numerical study on distribution of sulfate, nitrate and ammonium aerosols over east Asia during the TRACE-P campaign[J]. Plateau Meteorology, 2003, 22(1):1-6 doi: 10.3321/j.issn:1000-0534.2003.01.001
[3]郑辉辉, 师华定, 陈莉荣, 等.典型行业黑碳气溶胶排放对区域气候的影响模拟[J].环境工程技术学报, 2017, 7(3):255-261 doi: 10.3969/j.issn.1674-991X.2017.03.037
ZHENG H H, SHI H D, CHEN L R, et al. Simulation of impact of black carbon aerosol on regional climate change in typical industries[J]. Journal of Environmental Engineering Technology, 2017, 7(3):255-261 doi: 10.3969/j.issn.1674-991X.2017.03.037
[4]李德平, 程兴宏, 孙治安, 等.北京不同区域气溶胶辐射效应[J].应用气象学报, 2018, 29(5):609-618 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201805009
LI D P, CHENG X H, SUN Z A, et al. Radiative effects of aerosols in different areas of Beijing[J]. Journal of Applied Meteorological Science, 2018, 29(5):609-618 http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201805009
[5]IPCC. Climate Change 2013:The Physical Science Basis:Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2013:576-578
[6]XIA X, CHE H, ZHU J, et al. Ground-based remote sensing of aerosol climatology in China:Aerosol optical properties, direct radiative effect and its parameterization[J]. Atmospheric Environment, 2016, 124:243-251 doi: 10.1016/j.atmosenv.2015.05.071
[7]王志立.典型种类气溶胶的辐射强迫及其气候效应的模拟研究[D].北京: 中国气象科学研究院, 2011: 131-135
WANG Z L. Simulation of radiative forcing of typical aerosols and their effects on climate[D]. Beijing: Chinese Academy of Meteorological Sciences, 2011: 131-135
[8]刘秀位, 张小雨, 张喜英.大气气溶胶增加对作物的影响研究进展[J].生态学报, 2016, 36(7):2084-2090 http://d.old.wanfangdata.com.cn/Periodical/stxb201607032
LIU X W, ZHANG X Y, ZHANG X Y. A review of the research on crop responses to the increase in aerial aerosol[J]. Acta Ecologica Sinica, 2016, 36(7):2084-2090 http://d.old.wanfangdata.com.cn/Periodical/stxb201607032
[9]BERGIN M H, GREENWALD R, XU J, et al. Influence of aerosol dry deposition on photosynthetically active radiation available to plants:A case study in the Yangtze Delta Region of China[J]. Geophysical Research Letters, 2001, 28(18):3605-3608 doi: 10.1029/2001GL013461
[10]CHEN Y P. Ecophysiological responses of winter wheat seedling to aerosol wet deposition of Xi'an area, China[J]. Journal of Environmental Sciences, 2010, 22(11):1786-1791 doi: 10.1016/S1001-0742(09)60320-X
[11]HUANG Y, DICKINSON R E, CHAMEIDES W L. Impact of aerosol indirect effect on surface temperature over East Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12):4371-4376 doi: 10.1073/pnas.0504428103
[12]IPCC. Climate Change 2014:Impacts, Adaptation and Vulnerability. Part A:Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014:491-492
[13]CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate forcing by anthropogenic aerosols[J]. Science, 1992, 255(5043):423-430 doi: 10.1126/science.255.5043.423
[14]BOIYO R, KUMAR K R, ZHAO T L. Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa[J]. Atmospheric Research, 2017, 197:277-288 doi: 10.1016/j.atmosres.2017.07.012
[15]ZHANG T Y, YUE X, LI T, et al. Climate effects of stringent air pollution controls mitigate future maize losses in China[J]. Environmental Research Letters, 2018, 13(12):124011 doi: 10.1088/1748-9326/aaea09
[16]翟薇.大气气溶胶辐射效应对长江三角洲地区主要作物生产的影响[D].北京: 中国气象科学研究院, 2007: 1-11
ZHAI W. The impacts of radiative effects of atmospheric aerosol on primary crops' growth in the Yangtze Delta region[D]. Beijing: Chinese Academy of Meteorological Sciences, 2007: 1-11
[17]任义方, 王春乙, 赵艳霞.气溶胶辐射效应对作物及生态系统的影响综述[J].中国农业气象, 2010, 31(4):533-540 doi: 10.3969/j.issn.1000-6362.2010.04.009
REN Y F, WANG C Y, ZHAO Y X. Review on impact of atmospheric aerosol radiation effect on crops and ecological system[J]. Chinese Journal of Agrometeorology, 2010, 31(4):533-540 doi: 10.3969/j.issn.1000-6362.2010.04.009
[18]赵俊芳, 李宁, 候英雨, 等.基于APSIM模型评估北方八省春玉米生产对气候变化的响应[J].中国农业气象, 2018, 39(2):108-118 doi: 10.3969/j.issn.1000-6362.2018.02.005
ZHAO J F, LI N, HOU Y Y, et al. Evaluation of response of spring maize production to climate change in the eight provinces of northern China based on APSIM model[J]. Chinese Journal of Agrometeorology, 2018, 39(2):108-118 doi: 10.3969/j.issn.1000-6362.2018.02.005
[19]王力.华北地区气溶胶时空分异特性及对农作物影响的模拟研究[D].重庆: 重庆交通大学, 2015: 1-61
WANG L. Atmospheric aerosol spatial-temporal characteristics and its climatic effect on crop in North China[D]. Chongqing: Chongqing Jiaotong University, 2015: 1-61
[20]张建平, 赵艳霞, 王春乙, 等.气候变化情景下东北地区玉米产量变化模拟[J].中国生态农业学报, 2008, 16(6):1448-1452 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200806021
ZHANG J P, ZHAO Y X, WANG C Y, et al. Simulation of maize production under climate change scenario in Northeast China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6):1448-1452 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200806021
[21]GREENWALD R, BERGIN M H, XU J, et al. The influence of aerosols on crop production:A study using the CERES crop model[J]. Agricultural Systems, 2006, 89(2/3):390-413 doi: 10.1016-j.agsy.2005.10.004/
[22]GUPTA R, SOMANATHAN E, DEY S. Global warming and local air pollution have reduced wheat yields in India[J]. Climatic Change, 2017, 140(3/4):593-604 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe1bf4d7f7131a64d9037aa4cbb2daff
[23]赵俊芳, 徐慧, 孔祥娜, 等.基于MODIS和AERONET的气溶胶地表直接辐射效应评价[J].中国农业气象, 2018, 39(11):693-701 doi: 10.3969/j.issn.1000-6362.2018.11.001
ZHAO J F, XU H, KONG X N, et al. Estimating surface direct radiation effect of aerosol based on MODIS and AERONET data[J]. Chinese Journal of Agrometeorology, 2018, 39(11):693-701 doi: 10.3969/j.issn.1000-6362.2018.11.001
[24]HOLZWORTH D P, HUTH N I, DEVOIL P G, et al. APSIM-Evolution towards a new generation of agricultural systems simulation[J]. Environmental Modelling & Software, 2014, 62:327-350 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db5cb5dfe873fe731c0be6010d0f0aed
[25]GAYDON D S, BALWINDER-SINGH, WANG E, et al. Evaluation of the APSIM model in cropping systems of Asia[J]. Field Crops Research, 2017, 204:52-75 doi: 10.1016/j.fcr.2016.12.015
[26]HOLZWORTH D, HUTH N I, FAINGES J, et al. APSIM next generation:Overcoming challenges in modernising a farming systems model[J]. Environmental Modelling & Software, 2018, 103:43-51 https://dblp.uni-trier.de/db/journals/envsoft/envsoft103
[27]赵彦茜, 齐永青, 朱骥, 等. APSIM模型的研究进展及其在中国的应用[J].中国农学通报, 2017, 33(18):1-6 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201718001
ZHAO Y X, QI Y Q, ZHU J, et al. Research progress of APSIM model and its application in China[J]. Chinese Agricultural Science Bulletin, 2017, 33(18):1-6 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201718001
[28]MA L, AHUJA L R, SASEENDRAN S A, et al. A protocol for parameterization and calibration of RZWQM2 in field research[M]//AHUJA L R, MA L W. Methods of Introducing System Models into Agricultural Research. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2011: 1-64
[29]CHAMEIDES W L, YU H, LIU S C, et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture:An opportunity to enhance crop yields in China through emission controls?[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24):13626-13633 doi: 10.1073/pnas.96.24.13626
[30]张志薇, 王宏斌, 张镭, 等.中国地区3个AERONET站点气溶胶直接辐射强迫分析[J].中国科学院大学学报, 2014, 31(3):297-305 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201403002
ZHANG Z W, WANG H B, ZHANG L, et al. Aerosol direct radiative forcing at three AERONET sites in China[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):297-305 http://d.old.wanfangdata.com.cn/Periodical/zgkxyyjsyxb201403002

相关话题/辐射 北京 气象 图片 中国气象科学研究院